
Assignment 1 (Written):
Exterior Calculus

CMU 15-458/858—Discrete Differential Geometry

Submission Instructions. Please submit your solutions to the exercises (whether handwritten, LaTeX, etc.)
as a single PDF file to the course Gradescope. Scanned images/photographs can be converted to a PDF
using applications like Preview (on Mac) or a variety of free websites (e.g., http://imagetopdf.com).
Your graded submission will (hopefully!) be returned to you at least one day before the due date of the next
written assignment.

Grading. Please clearly show your work. Partial credit will be awarded for ideas toward the solution, so
please submit your thoughts on an exercise even if you cannot find a full solution.

If you don’t know where to get started with some of these exercises, just ask! A great way to do this is to leave
comments on the course webpage under this assignment; this way everyone can benefit from your questions.
We are glad to provide further hints, suggestions, and guidance either here on the website, via email, or in
person.

Late Days. Note that you have 5 no-penalty late days for the entire course, where a “day” runs from 6:00:00
PM Eastern to 5:59:59 PM Eastern the next day. No late submissions are allowed once all late days are
exhausted. If you wish to claim one or more of your five late days on an assignment, please indicate which
late day(s) you are using in your email submission. You must also draw Late-onic solids corresponding to
the late day(s) you are using. Use them wisely, as you cannot use the same polyhedron twice! If you are
typesetting your homework on the computer, we have provided images that can be included for this purpose
(in LATEX these can be included with the \includegraphics command in the graphicx package).

LATE

LATE
LATE LATE

LATE

Collaboration and External Resources. You are strongly encouraged to discuss all course material with
your peers, including the written and coding assignments. You are especially encouraged to seek out new
friends from other disciplines (CS, Math, Engineering, etc.) whose experience might complement your own.
However, your final work must be your own, i.e., direct collaboration on assignments is prohibited.

You are allowed to refer to any external resources except for homework solutions from previous editions
of this course (at CMU and other institutions). If you use an external resource, cite such help on your
submission. If you are caught cheating, you will get a zero for the entire course.

Warning! With probability 1, there are typos in this assignment. If anything in this handout does not make
sense (or is blatantly wrong), let us know! We will be handing out extra credit for good catches. :-)
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Format. This written assignment is intended to be a “crash course” in exterior algebra and exterior
calculus in Rn. To keep things simple, we’ll mainly stick to the cases n = 2 or n = 3 (which are key for doing
geometry in the plane or in three-dimensional space), but many of these ideas naturally generalize to any
dimension n. Each subsection is divided into three parts:

(1) an intuition section where concepts are introduced informally with visualizations;

(2) an exercise section with calculation, proofs, and other exercises to cement the concepts; and

(3) a formal definition section where everything is laid out rigorously.

Note that it is NOT essential that you understand all the details in part (3) in order to do the homework
exercises. These details are provided only as a reference, especially for those seeking more formal definitions.

Warning! This assignment is closely connected to Chapter 4 of the course notes. However, Chapter 4
goes beyond “flat” spaces like the plane R2 and also discusses exterior calculus on spaces with curvature.
As such, certain parts of Chapter 4 can be skipped for now (e.g., the sharp and flat operators); we will
eventually cover all this material in class.

1 Exterior Algebra in Rn

In addition to the short readings outlined in the “Intuition” sections below, you may find it useful to look
through the course slides on Exterior Algebra. Those interested in further details might consult the Wikipedia
page on exterior algebra provides additional detail, though most of this material is not needed to do the
exercises in this assignment.

1.1 Wedge product and k-vectors

1.1.1 Intuition

Read Chapter 4 of the course notes up to “3.1.3 The Hodge Star” as well as Example 1 in Section 4.2.

1.1.2 Exercises

Exercise 1. Let v = e1 + 2e2 and w = e2 + 2e3 be 1-vectors in R3. Compute

(a) v ∧ w

(b) w ∧ v

(c) v ∧ v

Exercise 2. Consider the following 1-vectors in R2:

α0 = e1 + e2
α1 = e1 + 2e2
α2 = e1 + 4e2

Compute
α0 ∧ α1 ∧ α2

and give an interpretation of the result.

Exercise 3. Let u = e1 + e2 + e3 and v = e1 − e2 + e3 be 1-vectors in R3. Compute both u ∧ v and u× v.
What’s the difference between these two quantities?

Exercise 4. Let u = e1 + e2 − e3, v = e1 − e2 + 2e3, and w = 3e1 + e2. Compute

(a) u ∧ v + v ∧ w

(b) (u ∧ v) ∧ w
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1.1.3 Formal definitions

Real vector space. A real vector space is a set V together with binary operations.

+ : V ×V → V “addition”
· : R×V → V “scalar multiplication”

which satisfy the following eight axioms for all x, y, z ∈ V and a, b ∈ R

x + y = y + x (ab) · x = a · (b · x)
(x + y) + z = x + (y + z) 1 · x = x
∃0 ∈ V s.t. x + 0 = 0 + x = x a · (x + y) = a · x + a · y
∀x, ∃x̃ ∈ V s.t. x + x̃ = 0 (a + b) · x = a · x + b · x

For brevity, the · is usually omitted (e.g., ax = a · x).

Basis and dimension. Let V be a vector space. A collection of vectors is linearly independent if no vector
in the collection can be expressed as a linear combination of the others. A linearly independent collection
of vectors {e1, . . . , en} is a basis for V is every vector v ∈ V can be expressed as

v = v1e1 + · · · vnen

for some collection of coefficients v1, . . . , vn ∈ R. In this case, we say that V is finite dimensional with
dimension n.

Canonical bases. In Rn, the canonical basis, denoted by e1, . . . , en is defined so that

e1 := (1, 0, 0, . . . , 0, 0)
e2 := (0, 1, 0, . . . , 0, 0)

...
en := (0, 0, 0, . . . , 0, 1).

Wedge product of k-vectors over Rn. Let e1, . . . , en be the canonical (“usual”) basis for Rn. For
each integer 0 ≤ k ≤ n, let

∧k denote an (n
k)-dimensional vector space with basis elements denoted by

ei1 ∧ · · · ∧ eik for all possible sequences of indices 1 ≤ i1 < · · · < ik ≤ n, corresponding to all possible
“axis-aligned” k-dimensional volumes. Elements of

∧k are called k-vectors.
The wedge product is a bilinear map

∧k,l :
k∧
×

l∧
→

k+l∧
uniquely determined by its action on basis elements; in particular, for any collection of distinct indices
i1, . . . , ik+l ,

(ei1 ∧ · · · ∧ eik ) ∧k,l (eik+1
∧ · · · ∧ eik+l ) := sgn(σ)eσ(i1) ∧ · · · ∧ eσ(ik+l)

,

where σ is a permutation that puts the indices of the two arguments in canonical (lexicographic) order,
and sgn(σ) is +1 if σ is an even permutation and −1 if σ is an odd permutation. Arguments with
repeated indices are mapped to 0 ∈ ∧k+l . For brevity, one typically drops the subscript on ∧k,l .
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1.2 Hodge Star

1.2.1 Intuition

Read Section 4.1.3 and Section 4.2 of the course notes. See also the course slides on exterior algebra.

1.2.2 Exercises

Exercise 5. (Hodge star in different dimensions.)

(a) Assume we are working in R2, compute ?e1.

(b) Assume we are working in R3, compute ?e1.

(c) Why are the results of (a) and (b) different?

Exercise 6. Let α = e1 + e2 + e3, β = e1 − e2 + 2e3, be 1-vectors in R3.

(a) Compute ?α and ?β

(b) Compute ?(α ∧ β).

(c) Compute (?α) ∧ (?β).

(d) Why do (b) and (c) have different answers?

Exercise 7. (Applying the Hodge star twice.) Let w be any 1-vector in Rn.

(a) Show that if n = 2, then ?(?w) = −w. Can you explain why, geometrically?

(b) Show that if n = 3, then ?(?w) = w.

(c) (Extra credit) Show for all n ≥ 2, that ?(?w) = (−1)n+1w.

(d) (Extra credit) If w were a k-vector in Rn, what can you say about ?(?w)?

Exercise 8. (Putting it all together.) In R3, let α = 2e3 and β = e1 − e2 be 1-forms, and let γ = e2 ∧ e3 be a
2-form.

(a) Compute α ∧ (β + ?γ).

(b) Compute ?(γ ∧ ?(α ∧ β)).

1.2.3 Formal definitions

Hodge star The Hodge star on k-vectors in Rn is a linear isomorphism

? :
k∧
→

n−k∧
such that for any basis k-vector α = ei1 ∧ · · · ∧ eik , ?α is the unique basis (n− k)-vector times either +1
or −1 such that

det(α ∧ ?α) = 1

where det denotes the determinant of the constituent 1-vectors (treated as column vectors) with respect
to the inner product on Rn.

Exterior algebra The collection of vector spaces
∧k together with the maps ∧ and ? define an exterior

algebra on V (which is an example of a graded algebra).
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2 Exterior Calculus in Rn

2.1 Intuition

While discussing exterior algebra, we only needed to talk about individual k-vectors and their operators (e.g.,
∧ and ?) on them. Now, we wish to discuss how k-vectors change across some domain (just as we might
consider, say, the divergence or curl of a vector field).

Read Sections 3.3-3.7 of the course notes. Also keep reading the course slides on differential forms, the
exterior derivative, and integration of differential forms.

2.2 Exercises

Exercise 9. Recall that in exterior calculus we use ∂
∂x , ∂

∂y , ∂
∂z as a basis for vector fields on R3, and dx, dy, dz

as a basis for differential 1-forms on R3.1 Consider the differential 1-form α, which is defined by how it
measures each of the three basis vectors:

α( ∂
∂x ) = 2z

α( ∂
∂y ) = 3x2

α( ∂
∂z ) = 5 cos(y)

(a) Write α in terms of the basis {dx, dy, dz}.

(b) Evaluate α at the point p = (1, 2, 3) ∈ R3 on the constant vector field U = 3 ∂
∂x + 2 ∂

∂y + ∂
∂z .

(c) What is −α?

Exercise 10. Let U = ∂
∂x + 2 ∂

∂y + x ∂
∂z and V = 3 ∂

∂x + xy ∂
∂y + ∂

∂z be vector fields on R3. Let α = xdy and
β = dx + dz be differential 1-forms. Compute

(a) What kind of object is α(U)?

(b) α(U), α(V), β(U), β(V).

(c) (α ∧ β)(U, V).

(d) (α ∧ β)(V, U).

Exercise 11. Compute in R3

(a) (?[d(eydx + sin(z)dz)]) ∧ dz.

(b) d[?(d(dx ∧ z2dy)) + ?(xyzdx ∧ dz ∧ dy)].

Exercise 12. Coderivative. The coderivative of a differential k-form α in Rn, denoted by δα is defined as

δα = ?(d(?α)),

(As discussed in Section 4.4 of the course notes, the coderivative is related to the divergence operator from
vector calculus when k = 1 and n = 3 .)

(a) If α is a differential 0-form on Rn, explain why δα = 0.

(b) More generally, if α is a differential k-form on Rn, explain why δα is a differential (k− 1)-form.

1Important: Even though these bases may look like derivatives, you should try to forget that they have anything to do with derivatives for
now. Just treat them like any other basis you have ever worked with (e.g., e1, e2, e3).

5

http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf
http://brickisland.net/DDGSpring2019/wp-content/uploads/2019/02/DDG_458_SP19_Lecture05_DifferentialForms.pdf
http://brickisland.net/DDGSpring2019/wp-content/uploads/2019/02/DDG_458_SP19_Lecture06_ExteriorDifferentiation.pdf
http://brickisland.net/DDGSpring2019/wp-content/uploads/2019/02/DDG_458_SP19_Lecture06_ExteriorDifferentiation.pdf
http://brickisland.net/DDGSpring2019/wp-content/uploads/2019/02/DDG_458_SP19_Lecture07_ExteriorIntegration.pdf
http://www.cs.cmu.edu/~kmcrane/Projects/DDG/paper.pdf


(c) Consider the differential 1-form α = ey dx + (x + y)2 dy on R2. Compute δα.

Exercise 13. k-form Laplacian The general k-form Laplacian is defined as

∆ = δd + dδ = ?d ? d + d ? d ? .

(a) Why is the second term of ∆ (that is, d ? d?) unnecessary when applied to differential 0-forms?

(b) In vector calculus, the Laplacian of a scalar function φ is just the sum of second partial derivatives
∂2φ

∂x2
1
+ · · ·+ ∂2φ

∂x2
n

. Using this expression, compute the Laplacian of the scalar function φ(x, y) = xy + 2y2

over R2.

(c) Compute the Laplacian ∆φ of the same function from part (b), this time using the expression from
exterior calculus. (Show your work!)

(d) Compute ∆α for the 1-form α = xdx + zdy− ydz in R3.

Exercise 14. Exactness. A common misconception when people first learn exterior calculus is that the
differential d behaves like a derivative in single-variable calculus. For example, in R1, the function f (x) = x3

has the property that d2

dx2 f = 6x, but the 0-form α(x) = x3 has the property that

d(d(α)) = 0.

Why are these different? Answer however you see fit.

2.3 Formal definitions

Linear functions and dual vector space. Let V be a real vector space V. A function α : V → R is linear
if for all u, v ∈ V and c ∈ R,

α(u + v) = α(u) + α(v)
α(cu) = cα(u),

The dual vector space V∗ is the space of all linear functions α : V → R with the operations

(α + β)(u) = α(u) + β(u)
(cα)(u) = c(α(u)).

We call the elements of V∗ covectors or 1-forms.
Suppose e1, . . . , en is a basis for Rn. The standard basis for the dual space (Rn)∗ is then the collection

of covectors dx1, . . . , dxn uniquely determined by the relationship

dxi(ej) :=

{
1 i = j
0 otherwise

for all i, j ∈ {1, . . . , n}.

Wedge product of k-forms over Rn. Let dx1, . . . , dxn be the canonical basis for (Rn)∗. For each integer
0 ≤ k ≤ n, let Ωk denote an (n

k)-dimensional vector space with basis elements denoted by dxi1 ∧ · · · ∧ dxik

for all possible sequences of indices 1 ≤ i1 < · · · < ik ≤ n, corresponding to all possible “axis-aligned”
k-dimensional volumes. Elements of Ωk are called k-forms.

The wedge product is a bilinear map

∧k,l : Ωk ×Ωl → Ωk+l
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uniquely determined by its action on basis elements; in particular, for any collection of distinct indices
i1, . . . , ik+l ,

(dxi1 ∧ · · · ∧ dxik ) ∧k,l (dxik+1 ∧ · · · ∧ dxik+l ) := sgn(σ)dxσ(i1) ∧ · · · ∧ dxσ(ik+l),

where σ is a permutation that puts the indices of the two arguments in canonical (lexicographic) order.
Arguments with repeated indices are mapped to 0 ∈ Ωk+l . As before, for brevity, one typically drops
the subscript on ∧k,l .

Furthermore, these k-forms are also functions. For every α1, α2, . . . , αk ∈ Ω1 and v1, . . . , vk ∈ Rn we
have that

(α1 ∧ α2 ∧ · · · ∧ αk)(v1, . . . , vk) := ∑
σ∈Sk

sgn(σ)α1(vσ(1)) · · · αk(vσ(k)).

where Sk is the set of permutations on k elements.

Hodge star. The Hodge star on k-forms is completely analogous with the corresponding basis of
dx1, . . . , dxn.

Differential. Recall that Ωk is the space of k-forms on Rn. The k-form differential dk : Ωk → Ωk+1 is the
unique linear map satisfying the following three properties.

• Differential. If k = 0, for all φ ∈ Ω0 and X ∈ Rn, d0φ(X) = DXφ, the directional derivative in the
direction X (e.g.the one from multivariable calculus).

• Product rule. If α is a k-form and β is an `-form then

dk+`(α ∧ β) = dkα ∧ β + (−1)kα ∧ d`β.

• Exactness. dk+1 ◦ dk = 0.

3 Discrete Exterior Calculus

3.1 Intuition

Read Section 4.8 of the course notes, as well as the slides on discrete differential forms and discrete exterior
calculus.

To give a taste of what discrete exterior calculus is like, we introduce the concept in R2. The discrete versions
of the operators d and ? are given as in the reading (also see the “Formal definitions” in this section). Another
important operator to discretize is the wedge product (∧), which we discuss only in the “Formal definitions”
section (a rare exception: you will need to read this section to do one of the exercises).

3.2 Exercises

All of these exercises take place in R2.

Exercise 15. Integration practice. Consider the (continuous) 1-form α = 2dx + xdy, and the two points
A = (0, 0) and B = (1, 1) in the plane.2

(a) Integrate α over the oriented edge (A, B) to get the discrete 1-form α̂(A, B).

2The recipe for integrating a 1-form over an edge is:

1. Compute the unit vector along the edge (being careful about orientation).

2. Apply the 1-form to the unit vector.

3. Integrate the resulting expression over the edge.

The final integral (in Step 3) should not look much different from what you did in your intro calculus/vector calculus class.
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(b) Integrate α over the oriented edge (B, A) to get the discrete 1-form α̂(B, A).

(c) How do these two discrete quantities relate?

Exercise 16. Exactness. Consider any triangle mesh (V, E, F). Prove that d1 ◦ d0 = 0. That is, every discrete
differential 0-form when differentiated twice becomes 0.

Exercise 17. Discrete operator practice. Consider the following triangulated region below.

f (   ) = 5 f (   ) = 2

f (   ) = 3f (   ) = 6

A B

CD

Let V = {A, B, C, D} be the set of vertices. Assume they have coordinates

A = (0, 1); B = (1, 1); C = (1, 0); D = (0, 0).

There is a function f : V → R on vertices (i.e., a discrete 0-form) whose values are given in the figure
above. The arrow on each edge and face indicates its orientation.

(a) Letting d denote the discrete exterior derivative, what kind of object is d f ? (i.e., a 0-form, 1-form, etc.)

(b) What are the domain and range of d f ?

(c) Compute d f .

(d) Compute d(d f ).

Exercise 18. Discrete wedge practice. Refer to the same setup as the previous exercise. Define a second
discrete 0-form h : V → R with values

h(A) = −3, h(B) = 0, h(C) = 2, h(D) = 3

(a) Compute f ∧0,0 h

(b) Compute (d f ) ∧1,0 h

(c) Compute [d((d f ) ∧1,0 h)] ∧2,0 h.

(d) Compute (d f ) ∧1,1 (dh).

Exercise 19. Commutativity of d. Refer to the same setup as the previous two exercises. Consider the
(continuous) 0-form g : R2 → R defined by

g = y2(x + 2y).

(a) Discretize g; that is, evaluate g at each vertex in V. Call these values ĝ : V → R.

(b) Compute the (continuous) differential dg.

8



(c) Compute the (discrete) differential dĝ.

(d) Integrate the 1-form found in (b) over each edge of the triangulation.

(e) Why are the answers to (c) and (d) the same?

Exercise 20. Matrix representations. Continue using the same setup from the previous exercises. Algorith-
mically, 0-forms, 1-forms, and 2-forms are often represented as vectors of length |V|, |E|, and |F|, respectively.
The differential and other operators can then be represented as matrices, as discussed in the course notes.

(a) Write out the |E| × |V|matrix representing d0.

(b) Write out the |F| × |E|matrix representing d1.

Exercise 21. Discrete Hodge star practice. Consider the following mesh of 6 equilateral triangles with
side-length 1.

A

B E

F

O

C D

Consider the three forms α0, α1, α2 such that

α0(A) = 1 α1(A, O) = 2 α2(A, B, O) = 3
α0(B) = 2 α1(O, B) = −5 α2(C, B, O) = −2
α0(C) = 3 α1(C, O) = 3 α2(D, C, O) = 1
α0(D) = 4 α1(O, D) = 1 α2(D, E, O) = 0
α0(E) = 5 α1(E, O) = −3 α2(E, F, O) = −1
α0(F) = 6 α1(O, F) = −2 α2(A, F, O) = −2
α0(O) = 7 α1(A, B) = 4

α1(B, C) = 5
α1(C, D) = 3
α1(D, E) = −2
α1(F, E) = 1
α1(F, A) = 0

(a) Draw3 the dual mesh. You do not need to draw boundary elements.

(b) What kind of discrete forms are ?0α0, ?1α1, and ?2α2?

(c) Compute ?0α0. (The area of each triangle is
√

3
4 .)

3Either a hand-drawn or computer-drawn image is acceptable.
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(d) Compute ?1α1.

(e) Compute ?2α2.

(f) Write down a matrix representation of ?1. (Ignore boundary elements.) The rows should represent
edges of the primal mesh, and the columns should represent edges of the dual mesh.

(g) Write down a matrix representation of ?2.

3.3 Formal definitions

3.3.1 Triangle meshes and their duals

A triangle mesh in R2 is a collection of triangles which are connected. (There are other assumptions, but
this is rigorous enough for the current assignment.) Each edge and face will have an orientation.

The vertices are denoted as V, the oriented edges are denoted as E, and the oriented faces are denoted
as F. For notation, we denote vertices with a single symbol, like v; oriented edges with an ordered pair,
like (u, v) is oriented from u to v; and oriented faces with an ordered triple, like (u, v, w) is oriented
from u to v to w.

The dual mesh also has vertices V?, edges E?, and faces F?. Each dual vertex f ? ∈ V? is the circumcenter
of some face in f ∈ F. (The circumcenter is the unique point equidistant from each vertex of the face.)
Each dual edge e? ∈ E? connects the circumcenters of two faces sharing the edge e ∈ E, and each dual
face v? ∈ F? is the region bounded by the dual edges surrounding v ∈ V. Like with the primal (original)
mesh, each dual edge and dual face has an orientation. Note that the dual faces are not necessarily
triangles (see section 4.8.4 of the course notes).

3.3.2 Discrete forms

Let Ω0 be the set of functions f : V → R, the discrete 0-forms. Likewise, let Ω1 be the set of functions
α : E → R, the discrete 1-forms and let Ω2 be the set of functions β : F → R, the discrete 2-forms. The
discrete 1-forms and 2-forms also satisfy the following equations.

∀(u, v) ∈ E, α(u, v) = −α(v, u)
∀(u, v, w) ∈ F, β(u, v, w) = β(v, w, u) = β(w, u, v)

= −β(v, u, w) = −β(w, v, u) = −β(u, w, v).

Let Ω?0 be the set of functions f : V? → R, the discrete dual 0-forms. Likewise, let Ω?1 be the set of
functions α : E? → R, the discrete dual 1-forms and let Ω?2 be the set of functions β : F? → R, the discrete
dual 2-forms. Like their primal counterparts, the discrete dual 1-forms and 2-forms change sign when
the orientation is changed:

∀(u, v) ∈ E?, α(u, v) = −α(v, u)
∀(u1, . . . , uk) ∈ F? and σ = Sk, β(u1, . . . , uk) = sgn(σ)β(uσ(1), . . . uσ(k)).

3.3.3 Discrete differential

The discrete differential for triangle meshes in R2 is a pair of maps d0 : Ω0 → Ω1 and d1 : Ω1 → Ω2.
Such that for each f ∈ Ω0, α ∈ Ω1, (u, v) ∈ E and (u, v, w) ∈ F,

(d0 f )(u, v) := f (v)− f (u)
(d1α)(u, v, w) := α(u, v) + α(v, w) + α(w, u).
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3.3.4 Discrete Hodge star

There are three Hodge stars ?0, ?1, ?2.
The first one, ?0 : Ω0 → Ω?2 maps a primal 0-form α0 : V → R to a dual 2-form ?0α0 : F? → R. For

all v? ∈ F?,
(?0α0)(v?) := |Area(v?)|α0(v),

The second one, ?1 : Ω1 → Ω?1 maps a primal 1-form α1 : E→ R to a dual 1-form ?1α1 : E? → R. For
all e?inE?,

(?1α1)(e?) :=
|Length(e?)|
|Length(e)| α1(e).

Finally, ?2 : Ω2 → Ω?0 maps a primal 2-form α2 : F → R to a dual 0-form ?2α2 : V? → R. For all
f ? ∈ V?,

(?2α2)( f ?) :=
1

|Area( f )|α2( f ).

3.3.5 Discrete wedge

There are four wedge products: ∧0,0,∧1,0,∧2,0,∧1,1.
∧0,0 : Ω0 ×Ω0 → Ω0 is simply the pointwise product. For all f , g ∈ Ω0 and v ∈ V

( f ∧0,0 g)(v) := f (v)g(v).

∧1,0 : Ω1 ×Ω0 → Ω1 is a product of the form at the edge with the average with the 0-forms at the ends.
For all α ∈ Ω1, f ∈ Ω0, and (u, v) ∈ E

(α ∧1,0 f )(u, v) := α(u, v)
f (u) + f (v)

2
.

∧2,0 : Ω2 ×Ω0 → Ω2. For all β ∈ Ω2, f ∈ Ω0, and (u, v, w) ∈ F

(β ∧2,0 f )(u, v, w) := β(u, v, w)
f (u) + f (v) + f (w)

3
.

∧1,1 : Ω1 ×Ω1 → Ω2. For all α1, α2 ∈ Ω1 and (u, v, w) ∈ F

(α1 ∧1,1 α2)(u, v, w) :=
1
6
[α1(u, v)α2(v, w)− α1(v, w)α2(u, v)

+ α1(v, w)α2(w, u)− α1(w, u)α2(v, w)

+ α1(w, u)α2(u, v)− α1(u, v)α2(w, u)].

Any other discrete wedge product in R2 returns 0. (Can you see why?)
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