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Exterior Calculus — Querview

* Previously: * Today: exterior calculus

e 1-form—Ilinear measurement of a vector e how do k-forms change?

¢ k-form—multilinear measurement of volume e how do we integrate k-forms?

* differential k-form—=k-form at each point

differential 2-form



Integration and Differentiation

* Two big ideas in calculus:

e differentiation
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* integration

e linked by fundamental theorem of calculus

e Exterior calculus generalizes these ideas

o differentiation of k-forms (exterior derivative)
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e integration of k-forms (measure volume)

e linked by Stokes” theorem

e Goal: integrate differential forms over meshes to get discrete exterior calculus (DEC)



Motivation for Exterior Calculus

e Why generalize vector calculus to exterior calculus?
e Hard to measure change in volumes using basic vector calculus
 Duality clarifies the distinction between different concepts/quantities
e Topology: notion of differentiation that does not require metric (e.g., cohomology)

e Geometry: clear language for calculus on curved domains (Riemannian manifolds)

e Physics: clear distinction between physical quantities (e.g., velocity vs. momentum)
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Derrvative— Many Interpretations. ..
f(x)

“slope of the graph”/

“rise over run”

“best linear approximation”

“rate of change” “pushforward”
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Review

.............

............

curl Y

div X




Review: Vector Derivatives in Coordinates

How do we express grad, div, and curl in coordinates?

Consider a scalar function ¢ : R®> — R and a vector field

where u,v,w : R" — IR are coordinate functions that vary over the domain,

and %, %, g—z are the standard basis vector fields.
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E xte TiOT' D@}’i(]ative (OF — space of all differential k-forms)

Unique linear map d : OF — QFF1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aApB)=da AP+ (—1)*a A dB

exactness dod =20

Where do these rules come from?
(What's the geometric motivation?)



Exterior Derivative — Differential



Review: Directional Derivative

 The directional derivative of a scalar function ¢ at a point p

with respect to a vector X is the rate at which that function

increases as we walk away from p with velocity X.

* More precisely:

Dyg| = lim 2P HEX) = 9(p)

e Alternatively, suppose that X is a vector field, rather than
just a vector at a single point. Then we can write just:

Dxad

e The result is a scalar function, whose value at each point
p is the directional derivative along the vector X(p).

¢
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¢ :R" - R

Intuition: as we walk along a
curve y tangent to X, how fast
will an observed quantity ¢
change as we pass through p?




Review: Gradient

Let ¢ : R" — IR. What is the gradient of ¢?

Geometric intuition. “Uphill direction.”
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Coordinate approach. In Fuclidean IR", list of partials:
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Coordinate-free approach.
(V¢,X) = Dx¢ forall X
Le., the gradient is the unique”* vector field V¢ whose inner product with any

vector field X yields the directional derivative Dx¢ along X.

*If it exists! lL.e., assuming the function is differentiable.



Differential of a Function

e Recall that differential O-forms are just ordinary scalar functions
e Change in a scalar function can be measured via the differential
* Two ways to define differential:

1. As unique 1-form such that applying to any vector field
gives directional derivative along those directions:

dp(X) = Dx¢
2. In coordinates:
. BQD 1 | aqb n
dp = o dx" + gy dx

...but wait, isn’t this just the same as the gradient?
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Gradient vs. Differential

e Superficially, gradient and differential look quite similar (but not identical!):

(V¢, X) = Dx¢ dp(X) = Dx¢
e Especially in R":
a9 A 0 R o,
Ve = oxl oxl  Ox™ 9x" ap = ox! ax” + - Ox™ ax

e So what's the difference?
e For one thing, one is a vector field; the other is a differential 1-form

* More importantly, gradient depends on inner product; ditterential doesn’t

(dp)* =V <= |dp(-)=(V¢, )| < (V¢)’ =d¢

Makes a big difference when it comes to curved geometry, numerical optimization, ...



Exterior Derivative — Product Rule



Exterior Derivative

Unique linear map d : OF — QFF1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aApB)=da AP+ (—1)koc/\dﬁ

exactness dod =20



Review: Product of Numbers

Q: Why is it true that ab = ba for any two real numbers g, b?

Q: What's the geometric interpretation of the statement “4 x 3 = 12”7

A: |

12

Q: How about “3 x4 =12"7?

A:




Product Rule— Derivative

For any differentiable functions f,¢: R — R, (f¢)' = f'¢ + f¢'.
Q: Why? What's the geometric interpretation?

(f8)'(x) = lim - £(x)g(x)




Product Rule— Exterior Derivative

Let a be a k-form and let  be an ¢-form. Then

d(a AB) = (da) A B+ (=1) a A (dB).

Q: Geometric intuition?
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(Does this cartoon depict the exterior derivative? Or a directional derivative?) aNB+a NB+aNpP



Product Rule— “Recursive Evaluation”

Example. Let « := u dx, B := v dy, and <y := w dz be diftferential 1-forms on R”,
where u, v, w : R" — R are 0-forms, i.e., scalar functions. Also, let w := a A B. Then

dlwNAy) = (dw) Ay + (=1)*w A (d7y).
We can then “recursively” evaluate derivatives that appear on the right-hand side:

do = (da)AB+(—=1)ta A (dB),

(do)
de = (du) Adx+ (—1)0 M
A = (dv)ANdy+ (—1)" M
dy = (dw)ANdz+ (— ZUM

Key idea: The “base case” is the 0-forms, i.e., computing the tinal result boils down
to taking the differential of ordinary scalar functions.



Exterior Derivative— Examples

Example. Let ¢(x,v) := %e_(xzwz). Then d¢ = g—fdx | g?;dy
= —2¢(xdx + ydy)

Example. Let a(x,y) = xdx + ydy. Then da =
0 d
(§5dx + §dy) Adx + (Fhdx + 5hdy) Ady

=dxANdx+dyNdy =0+0 =0.

Example. Again let a(x,y) = xdx + ydy. Thend xa = d(x xdx + y xdy)
= d(xdy — ydx)
=dx Ndy —dy N dx
= 2dx N\ dy.



Exterior Derivative — Exactness



Exterior Derivative

Unique linear map d : OF — QFF1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aApB)=da AP+ (—1)*a A dB

exactness dod =20
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Key idea: exterior derivative should capture a similar idea.



What Happens if dod = 07

Q: Consider a 1-form a = udx 4 vdy + wdz, where the coetficients u, v, w are each
scalar functions R® — IR. What is the exterior derivative da in coordinates x, 1Y, z?

0 0 0
A: da = d(udx + vdy + wdz) = du A dx + udd< + do A dy + oddy + dw A dz + wddz”
0
(S—de | g;dy | g’;dz)/\der (g—ZMI g;dy/\dx (I) gZdZ/\dX)_I_
_ (g—gdx : ga;dy : ggdz)Adw = (§ydx A dy + Sody Ay 2dz A dy)+
w L%, L%, 0
(3xdx + 5,dy + 57dz) N dz (59dx N dz + §2dy A dz + Sedzdz)

= g;dx/\dy - 9dz Ndx + dx Ady — 9%dy Ndz — 92dz A dx - %Z;dy/\dz

= (97 — F)dy Ndz + (5 — §9)dz Adx + (5 — §5)dx A dy.

Q: Does this operation remind you of anything (verhaps from vector calculus)?



Exterior Derivative and Curl

Suppose we have a vector field

. .. 0 0 0
X 1= U Uay - W

Its curl is then
(Qw/dy — dv/0z)
VxX= (du/dz — Jw/dx)
(dv/dx — Ju/dy)
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L.ooks an awful lot like...

(Qw/dy — 9dv/dz) dyANdz
doe = (du/dz — Odw/dx) dz Ndx
(dv/dx — du/dy) dxANdy

Especially if we then apply the Hodge star.
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first d behaves just like gradient; second d behaves just like curl.
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Intuition: in IR



Exterior Derivative in 3D (1-forms)

Q: How about d x a? (Still for & = udx + vdy + wdz.)

A: dxoa =d(*(udx + vdy + wdz))
= d(udy Ndz + vdz \dx + wdx N\ dy)
=du NdyNdz+doNdz Ndx +dw Ndx N\ dy

= Sdx Ady Adz + §2dy Adz Adx + §2dz N dx A dy

— (gz g; %;”)dx/\dy/\dz

Q: Does this operation remind you of anything (verhaps from vector calculus)?



Exterior Derivative and Divergence

Suppose we have a vector field
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Its divergence is then N
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V'X: R e Y A,
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L.ooks an awful lot like...

dwa = (% 452+ 32 ) dx Ady A dz

............

............

Especially if we then apply the Hodge star.




Exterior Derivative - Divergence

.............

)
V- X = *d(*X ) ( codifferential: 0 := *dx )



Exterior vs. Vector Derrvatives — Summary

¢

.............

............

curl Y

div X

(x(dX"))F

*d(xX”)




Exterior Derivative — Summary



Exterior Derivative

Unique linear map d : OF — QFF1 such that

differential fork =0, d¢(X) = Dx¢
productrule d(aApB)=da AP+ (—1)*a A dB

exactness dod =20



Exterior Calculus— Diagram View

e Taking a step back, we can draw many of the operators seen so far as diagrams:

d
QO - o Ql
R! /curves R? /surfaces
> Ql < > QQ >

R3 /volumes

(),—diftterential k-forms



Laplacian

e Can now compose operators to get other operators
e E.g., Laplacian trom vector calculus:
A := div o grad

e Can express exact same operator via exterior calculus:

A=xdxd

e ...except that this expression easily generalizes to curved domains.

e Can also generalize to k-forms:

ox2

f(x)

A :=%dxd-+dxdx

e Will have much more to say about the Laplacian later on!




Exterior Derivative - Summary

e Exterior derivative d used to differentiate k-forms

 0-form: “gradient”

o -form: “curl”

e 2-form: “divergence” (codifferential 6)

e and more...

* Natural product rule

*d of d is zero Qg - ()4

* Analogy: curl of gradient

* More general picture (soon!) via Stokes’ theorem



Thanks!
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