
Written Assignment 5:
Geodesics and Beyond

CMU 15-458/858 (Spring 2021)

Submission Instructions. Please submit your solutions to the exercises (whether handwritten, LaTeX, etc.)
as a single PDF file to the course Gradescope. Scanned images/photographs can be converted to a PDF
using applications like Preview (on Mac) or a variety of free websites (e.g., http://imagetopdf.com). Your
graded submission will (hopefully!) be returned to you at least one day before the due date of the next
written assignment.

Grading. Please clearly show your work. Partial credit will be awarded for ideas toward the solution,
so please submit your thoughts on an exercise even if you cannot find a full solution. Note that you are
required to complete all the problems!

If you don’t know where to get started with some of these exercises, just ask! A great way to do this is to leave
comments on the course webpage under this assignment; this way everyone can benefit from your questions.
We are glad to provide further hints, suggestions, and guidance either here on the website, via email, or in
person. Office hours are still TBD, but let us know if you’d like to arrange an individual meeting.

Late Days. Note that you have 5 no-penalty late days for the entire course, where a “day” runs from 6:00:00
PM Eastern to 5:59:59 PM Eastern the next day. No late submissions are allowed once all late days are
exhausted. If you wish to claim one or more of your five late days on an assignment, please indicate which
late day(s) you are using in your email submission. You must also draw Platonic solids corresponding to
the late day(s) you are using (cube=1, tetrahedron=2, octahedron=3, dodecahedron=4, icosahedron=5). Use
them wisely, as you cannot use the same polyhedron twice! If you are typesetting your homework on the
computer, we have provided images that can be included for this purpose (in LATEX these can be included
with the \includegraphics command in the graphicx package).

Collaboration and External Resources. You are strongly encouraged to discuss all course material with
your peers, including the written and coding assignments. You are especially encouraged to seek out new
friends from other disciplines (CS, Math, Engineering, etc.) whose experience might complement your own.
However, your final work must be your own, i.e., direct collaboration on assignments is prohibited.

You are allowed to refer to any external resources except for homework solutions from previous editions
of this course (at CMU and other institutions). If you use an external resource, cite such help on your
submission. If you are caught cheating, you will get a zero for the entire course.

Warning! With probability 1, there are typos in this assignment. If anything in this handout does not make
sense (or is blatantly wrong), let us know! We will be handing out extra credit for good catches. :-)
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https://www.gradescope.com/courses/229513
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http://brickisland.net/DDGFall2017/LateSolids.zip


1 “Geodesics in Heat” Summary

Exercise 1. Read the paper “Geodesics in Heat: A New Approach to Computing Distance Based on Heat
Flow” by Crane, Weischedel, and Wardetzky. Following the instructions for submitting a reading assignment
on the course website.

See also this Youtube video for a more visual explanation.

2 Euler-Lagrange Equation Derivation

In the paper (p. 3), the authors have a vector field X on a surface M and seek to find φ : M → R which
minimizes

E(φ) :=
∫

M
‖∇φ− X‖2dA.

The paper then mentions that this minimum is achieved by precisely the solution to the Euler-Lagrange
equation ∆φ = ∇ · X. The following exercises informally derive this equation.

Exercise 2. Show that E(φ) is convex. That is, for all differentiable functions φ1 and φ2 and for all η ∈ [0, 1],

ηE(φ1) + (1− η)E(φ2) ≥ E(ηφ1 + (1− η)φ2).

You are welcome to use the fact that a twice differentiable function on Rn is convex if and only if its Hessian
is positive semidefinite. But you can’t apply this directly to E since we haven’t defined second derivatives of
E.

Exercise 3. Assume that ∇φ · n, where n is the boundary normal, vanishes along the boundary of M (this
includes the case ∂M = ∅). Show that

E(φ) = −〈〈∆φ, φ〉〉+ 2〈〈φ,∇ · X〉〉+ ‖X‖2.

Hint: Use integration by parts like in the previous homeworks.

Exercise 4. Even though E takes functions as input, we can still discuss the gradient of E, but it requires a
little machinery. First, we define the directional derivative to be

DψE(φ) = lim
ε→0

E(φ + εψ)− E(φ)
ε

.

Using the formula derived in the previous exercise, compute DψE(φ).

Exercise 5. We define the gradient ∇E(φ) to be the function such that

〈〈∇E(φ), ψ〉〉 = DψE(φ)

Compute ∇E(φ). Use this to show that ∇E(φ) = 0 only if ∆φ = ∇ · X.

3 Discretization of Divergence

How does one discretize a vector field on a surface? Like in the paper (see p.4), we assume that the vector
field is piecewise constant with respect to the faces.

Exercise 6. Derive
∇ · X =

1
2 ∑

j
cot θ1(e1 · Xj) + cot θ2(e2 · Xj)

by calculating the integrated divergence of X out of the dual cell for vertex i. (Hint: use Stokes’ theorem.)
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http://www.cs.cmu.edu/~kmcrane/Projects/GeodesicsInHeat/paper.pdf
http://brickisland.net/DDGFall2017/assignments/
https://www.youtube.com/watch?v=Dgu-V9ciGi8


4 Discretization of Boundary Conditions

In the coding assignments, you have been working with the discrete Poisson problem

∆φ = f ,

where φ and f are discrete 0-forms (functions on the vertices of the mesh), and ∆ is the cotan-Laplace
operator. When the mesh M has no boundary (e.g., when it is a topological sphere), then this equation
can be directly solved. In the case that M has boundary, some additional work in needed to discretize the
boundary conditions, whether they are Dirichlet or Neumann. For further information, see the slides on the
Laplace-Beltrami Operator.

In this section, we solve our discrete PDEs on the following mesh.
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For simplicity of computation, assume that all triangles are equilateral with unit length. (There is an
embedding in R3 for which this is the case!)

We further assume that

f1 = 1, f2 = 0, f3 = − 130
33 , f4 = 108

11 , f5 = − 130
33 .

4.1 Dirichlet Boundary Conditions

Recall that Dirichlet boundary conditions specify the value of φ on ∂M.

Exercise 7. Consider the discrete Dirichlet boundary conditions

φ3 = 1, φ4 = −2, φ5 = 1.

Write down a simplified system of equations:

A
[

φ1
φ2

]
= b

and solve for φ1 and φ2. Remember the mass matrix!

4.2 Neumann Boundary Conditions

Recall that Neumann boundary conditions specify the normal derivative of φ on ∂M.

Exercise 8. Consider the Neumann boundary conditions

g34 = 1, g45 = 2, g53 = −1.

Write down the system of equations (in matrix form) corresponding to these constraints. As you will get a
5-variable system of equations, you do not need solve for φ.
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http://brickisland.net/DDGFall2017/wp-content/uploads/2017/11/SwissArmyLaplacian.pdf


4.3 Dirichlet and Neumann Boundary Conditions

Exercise 9. Can we specify both the Dirichlet and Neumann boundary conditions from the previous two
exercises? If not, what goes wrong? (Your argument does not need to be incredibly formal. In particular, you
do not need to solve the system(s) of equations.)
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