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Motivation: Mapmaking Problem
• How do you make a flat map of the round globe?

• Hard to do!  Like trying to flatten an orange peel…

Impossible without some kind of distortion and/or cutting.



Conformal Mapmaking
• Amazing fact: can always make a map that exactly preserves angles.
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(Very useful for navigation!)



Conformal Mapmaking
• However, areas may be badly distorted…

(Greenland is not bigger than Australia!)



Conformal Geometry
More broadly, conformal geometry is the study of shape 

when one can measure only angle (not length).



Conformal Geometry—Visualized



Applications of Conformal Geometry Processing
Basic building block for many applications…

TEXTURE MAPPING

SHAPE ANALYSIS3D FABRICATION

CARTOGRAPHY REMESHING

SIMULATION SENSOR NETWORKS



Why Conformal?
• Why so much interest in maps that preserve angle?

• QUALITY: Every conformal map is already “really nice”

• SIMPLICITY: Makes “pen and paper” analysis easier

• EFFICIENCY: Often yields computationally easy problems

• GUARANTEES: Well understood, lots of theorems/knowledge



Conformal Maps are “Really Nice”
• Angle preservation already provides a lot of regularity

• E.g., every conformal map has infinitely many derivatives (C∞)

• Scale distortion is smoothly distributed (harmonic)

CONFORMAL NOT CONFORMAL



Conformal Coordinates Make Life Easy
• Makes life easy “on pen and paper”

• Curves: life greatly simplified by assuming arc-length parameterization
• Surfaces: “arc-length” (isometric) not usually possible

•  conformal coordinates are “next best thing” (and always possible!)
• only have to keep track of scale (rather than arbitrary Jacobian)



Aside: Isn’t Area-Preservation “Just as Good?”
• Q: What’s so special about angle?  Why not preserve, say, area instead?

• A: Area-preservation alone can produce maps that are nasty!

• Don’t even have to be smooth; huge space of possibilities.

• E.g., any motion of an incompressible fluid (e.g., swirling water):

ORIGINAL ANGLE
PRESERVING

AREA
PRESERVING



Computing Conformal Maps is Efficient
• Algorithms boil down to efficient, scalable computation

• sparse linear systems / sparse eigenvalue problems

• convex optimization problems

• Compare to more elaborate mapping problems

• bounded distortion, locally injective, etc.

• entail more difficult problems (e.g., SOCP)

• Much broader domain of applicability

• real time vs. “just once”



Conformal Maps Help Provide Guarantees
• Established topic*

• lots of existing theorems, analysis
• connects to standard problems (e.g., Laplace)
• makes it easier to provide guarantees (max principle, Delaunay, etc.)

• Uniformization theorem provides (nearly) canonical maps

*Also makes it harder to do something truly new in conformal geometry processing…!



Discrete Conformal Maps?
To compute conformal maps, we need some finite “discretization.”

similarity

First attempt: preserve corner angles in a triangle mesh:



Rigidity of Angle Preservation
Problem: one triangle determines the entire map! (Too “rigid”)

Need a different way of thinking…



(Some) Characterizations of Conformal Maps

angle preservation
metric rescaling

preservation of circlesconjugate harmonic
functions

critical points of
Dirichlet energy



(Some) Conformal Geometry Algorithms
CHARACTERIZATION ALGORITHMS

Cauchy-Riemann least square conformal maps (LSCM)

Dirichlet energy discrete conformal parameterization (DCP)
genus zero surface conformal mapping (GZ)

angle preservation angle based flattening (ABF)

circle preservation circle packing
circle patterns (CP)

metric rescaling conformal prescription with metric scaling (CPMS)
conformal equivalence of triangle meshes (CETM)

conjugate harmonic boundary first flattening (BFF)



MÖBIUS TRANSFORMATIONS /
STEREOGRAPHIC PROJECTION

CONE SINGULARITIES

Some Key Ideas in Conformal Surface Geometry
RIEMANN MAPPING /

UNIFORMIZATION

CAUCHY-RIEMANN EQUATION RICCI FLOW /
CHERRIER FORMULA

DIRAC EQUATION



Keenan Crane • CMU 15-458/858

DISCRETE CONFORMAL 
GEOMETRY

PART II:
SMOOTH THEORY

PART I: OVERVIEW

PART II: SMOOTH THEORY

PART III: DISCRETIZATION

PART IV: ALGORITHMS



Conformal Maps of Surfaces

SURFACE TO SURFACE

SURFACE TO PLANE

PLANE TO PLANE



Why Not Higher Dimensions?

Key idea: conformal maps of volumes are very rigid.



Plane to Plane



Plane to Plane
• Most basic case: conformal maps from region of 2D plane to 2D plane.

• Basic topic of complex analysis

• Fundamental equation: Cauchy-Riemann

• Many ideas we will omit (e.g., power series/analytic point of view)



Differential of a Map
• Basic idea we’ll need to understand: differential of a map

• Describes how to “push forward” vectors under a differentiable map

• (In coordinates, differential is represented by the Jacobian)

f

p+hX

X
p

f (p+hX)

f (p)
df(X)

Intuition: “how do vectors get stretched out?”



• A map is conformal if two operations are equivalent:

1. rotate, then push forward vector

2. push forward vector, then rotate

Conformal Map

(How can we write this condition more explicitly?)



• Not much different from the usual Euclidean plane

• Additional operations make it easy to express scaling & rotation

• Extremely natural for conformal geometry

• Two basis directions: 1 and i

• Points expressed as z = a+bi

Complex Numbers



Complex Numbers

nonsense!

More importantly: obscures geometric meaning.



Imaginary Unit—Geometric Description

Symbol ι denotes quarter-turn in the counter-clockwise direction.



Complex Arithmetic—Visualized

rectangular
coordinates addition multiplication



Complex Product
• Usual definition:

• Complex product distributes over addition.  Hence,

Ok, terrific… but what does it mean geometrically?



Rectangular vs. Polar Coordinates

EULER’S IDENTITY

RECTANGULAR POLAR

(In practice: just convenient shorthand!)



Rotations with Complex Numbers
• How can we express rotation?

• Let u be any unit complex number:

• Then for any point                  we have

(same radius, new angle)



Scaling with Complex Numbers
• How can we express scaling?

• Let s be any real complex number:

• Then for any point                  we have

(same angle, new radius)



Complex Product—Polar Form

(Now forget the algebra and remember the geometry!)

More generally, consider any two complex numbers:

We can express their product as

•New angle is sum of angles
•New radius is product of radii



• A map is conformal if two operations are equivalent:

1. rotate, then push forward vector

2. push forward vector, then rotate

Conformal Map, Revisited

(How can we write this condition more explicitly?)



Conformal Map, Revisited
Consider a map

Then f is conformal as long as

for all tangent vectors X and all 
complex numbers z.

I.e., if it doesn’t matter whether 
you rotate/scale before or after 
applying the map.



Holomorphic vs. Conformal
• Important linguistic distinction: a conformal map is a holomorphic map 

that is “nondegenerate”, i.e., the differential is never zero.

conformal

holomorphic



Cauchy-Riemann Equation

All express the same geometric idea!

Several equivalent ways of writing Cauchy-Riemann equation:



Aside: Real vs. Complex Linearity
What if we just ask for real linearity?

No angle preservation.

In fact, maps can be arbitrarily “ugly”.  Why?

Because any differentiable f trivially satisfies this property!

f



Example—Möbius Transformations (2D)



Möbius Transformations “Revealed”

https://www.ima.umn.edu/~arnold/moebius/(Douglas Arnold and Jonathan Rogness)

https://www.ima.umn.edu/~arnold/moebius/


Sphere Inversion (nD)

(Note: Reverses orientation—anticonformal rather than conformal)



Surface to Plane



Surface to Plane
• Map curved surface to 2D plane (“conformal flattening”)

• Surface does not necessarily sit in 3D

• Slight generalization: target curvature is constant but nonzero (e.g., sphere)

• Many different equations: Cauchy-Riemann, Yamabe, …



Conformal Maps on Surfaces—Visualized

conformal

not conformal

How do we express this condition formally?



Tangent Plane
• Tangent vectors are those that “graze” the surface

• Tangent plane is all the tangent vectors at a given point



Differential of a Map from Surface to Plane
• Consider a map taking each point of a surface to a point in the plane

• Differential says how tangent vectors get “stretched out” under this map

(Really no different from plane to plane…)



Complex Structure
• Complex structure J rotates vectors in each tangent plane by 90 degrees

• Analogous to complex unit i

• E.g., 

• For a surface in       :

Motivation: will enable us to define 
conformal maps from surface to plane.

(where N is unit normal)

N



Holomorphic Maps from a Surface to the Plane
Plane to plane:

Surface to plane:



Example—Stereographic Projection

How? Don’t memorize some formula—derive it yourself!
E.g., What’s the equation for a sphere?  What’s the equation for a ray?



Riemann Mapping Theorem

conformal

Riemann
map

Riemann
map

Möbius



Riemannian Metric
• Can also understand conformal maps in terms of Riemannian metric

• Riemannian metric g is simply inner product in each tangent space

• Allows us to measure length, angle, etc.

• E.g., Euclidean metric is just dot product:

• In general, length and angle recovered via



Conformally Equivalent Metrics
• Two metrics are conformally equivalent if they are related by a positive 

conformal scale factor at each point p:

• Why write scaling as e2u?  Initially mysterious, but…
• ensures scaling is always positive
• factor eu gives length scaling
• more natural way of talking about area distortion      

(e.g., doubling in scale “costs” just as much as halving)

Q: Does this transformation preserve angles?



Uniformization Theorem
• Roughly speaking, Riemannian metric on any surface is conformally 

equivalent to one with constant curvature (flat, spherical, hyperbolic).



Why is Uniformization Useful?
• Provides canonical domain for solving equations, 

comparing data, cross-parameterization, etc.

• Careful: still have a few degrees of freedom     
(e.g., Möbius transformations)



Surface to Surface



• Conformal deformations of surfaces embedded in space

• Both surfaces can have arbitrary curvature (not just sphere, disk, etc.)

• Opens door to much broader geometry processing applications

• Very recent theory & algorithms (~1996/2011)

• Key equation: time-independent Dirac equation

Surface to Surface

Won’t say too much today… see https://youtu.be/UQC_emOPVK8



Geometry in the Quaternions
• Just as complex numbers helped with 2D 

transformations, quaternions provide natural 
language for 3D transformations

• Recent use of quaternions as alternative way of 
analyzing surfaces (Pedit, Pinkall, and others)

• Basic idea: points (a,b,c) get replaced with 
imaginary quaternions ai + bj + ck

• Surface is likewise an imaginary map f



Stretch Rotations
• How do we express rotation using quaternions?

• Similar to complex case, can rotate a vector x using a unit quaternion q:

• If q has non-unit magnitude, we get a rotation and scaling

• Should remind you of conformal map:

rotated original

scaling & rotation (but no shear)



• From here, not hard to express 
conformal deformation of 
surfaces

• Two surfaces f0, f are spin 
equivalent if their tangent planes 
are related by a pure scaling 
and rotation at each point:

Spin Equivalence

for all tangent vectors X and some
stretch rotation



Dirac Equation
• From here, one can derive the fundamental equation for conformal 

surface deformations, a time-independent Dirac equation

change in curvature

quaternionic Dirac operator stretch rotation

CRANE, PINKALL, SCHRÖDER, “Spin Transformations of Discrete Surfaces” (2011)



Spin vs. Conformal Equivalence
• Two surfaces that are spin equivalent are also conformally equivalent: 

tangent vectors just get rotated and scaled! (no shearing)

• Are conformally equivalent surfaces always spin equivalent?

• No in general, e.g., tori that are not regularly homotopic (below)

• Yes for topological spheres



Why Not Just Optimize Angles?
• Forget the mathematics—why not just optimize mesh to preserve angles?

• As discussed before, angle preservation is too rigid!

• E.g., convex surface uniquely determined by angles (up to rigid motion)

original deformed optimize angles



Next Up…



Next up… Discretization & Algorithms
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