DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION
Keenan Crane • CMU 15-458/858
OVERVIEW

DISCRETE DIFFERENTIAL GEOMETRY:
AN APPLIED INTRODUCTION

CMU 15-458/858 • Keenan Crane
Geometry is Coming...
Applications of DDG: Geometry Processing
Applications of DDG: Shape Analysis
Applications of DDG: Machine Learning
Applications of DDG: Numerical Simulation
Applications of DDG: Architecture & Design
Applications of DDG: Discrete Models of Nature
What Will We Learn in This Class?

• First and foremost: how to think about shape...
 • …mathematically (differential geometry)
 • …computationally (geometry processing)

• Central Theme: link these two perspectives

• Why? Shape is everywhere!
 • Every time you have a constraint \(f(x) = 0 \), you have a manifold*
 • computational biology, industrial design, computer vision, machine learning, architecture, computational mechanics, fashion, medical imaging…

*Must be sufficiently regular, etc.
What won’t we learn in this class?

• We won’t learn everything!
 • Many viewpoints on differential geometry we don’t have time to cover
 • Huge number of algorithms we won’t be able to cover
• Depending on your goals & interests the specific set of algorithms we cover this semester may not be directly useful!
 • e.g., you may care about point clouds and computer vision; we will focus mostly polygons and applications in geometry processing
• Recall main goal: learn how to think about shape!
 • Fundamental knowledge you gain here will translate to other contexts
Assignments

- **Derive** geometric algorithms from first principles (pen-and-paper)
- **Implement** geometric algorithms (coding)
 - Discrete surfaces
 - Exterior calculus
 - Curvature
 - Smoothing
 - Parameterization
 - Distance computation
 - Direction Field Design
What is Differential Geometry?

- **Language** for talking about *local properties of shape*
 - How fast are we traveling along a curve?
 - How much does the surface bend at a point?
 - etc.
- …and their connection to *global properties of shape*
 - So-called “local-global” relationships.
- Modern language of geometry, physics, statistics, …
- Profound impact on scientific & industrial development in 20th century
What is Discrete Differential Geometry?

- Also a language describing local properties of shape
 - *Infinity no longer allowed!*
- No longer talk about derivatives, infinitesimals…
- Everything expressed in terms of lengths, angles…
- Surprisingly little is lost!
 - Faithfully captures many fundamental ideas
- Modern language for geometric computing
- Increasing impact on science & technology in 21st century
Translate differential geometry into language suitable for computation.
How can we get there?

A common “game” is played in DDG to obtain discrete definitions:

1. Write down several equivalent definitions in the smooth setting.
2. Apply each smooth definition to an object in the discrete setting.
3. Determine which properties are captured by each resulting inequivalent discrete definition.

One often encounters a so-called “no free lunch” scenario: no single discrete definition captures all properties of its smooth counterpart.
Example: Discrete Curvature of Plane Curves

• Toy example: curvature of plane curves

• Roughly speaking: “how much it bends”

• First review smooth definition

• Then play The Game to get discrete definition(s)

• Will discover that no single definition is “best”

• Pick the definition best suited to the application

• Today we will quickly cover a lot of ground…

• Will start more slowly from the basics next lecture
Curvature of a Curve—Motivation
Curves in the Plane

In the smooth setting, a **parameterized curve** is a map* taking each point in an interval \([0,L]\) of the real line to some point in the plane \(\mathbb{R}^2\):

\[\gamma : [0, L] \rightarrow \mathbb{R}^2\]

*Continuous, differentiable, smooth...
As an example, we can express a circle as a parameterized curve γ:

$$\gamma : [0, 2\pi) \rightarrow \mathbb{R}^2; \ s \mapsto (\cos(s), \sin(s))$$
Discrete Curves in the Plane

Special case: a **discrete curve** is a **piecewise linear** parameterized curve, i.e., it is a sequence of **vertices** connected by straight line segments:

\[
\gamma_0 \rightarrow \gamma_1 \rightarrow \gamma_2 \rightarrow \ldots \rightarrow \gamma_n
\]

Shorthand: \(\gamma_i := \gamma(s_i) \)
A simple example is a curve comprised of two segments:

$$\gamma(s) := \begin{cases}
(s, 0), & 0 \leq s \leq 1 \\
(1, s - 1), & 1 < s \leq 2
\end{cases}$$
Informally, a vector is tangent to a curve if it “just barely grazes” the curve.

More formally, the unit tangent (or just tangent) of a parameterized curve is the map obtained by normalizing its first derivative:

\[T(s) := \frac{d}{ds} \gamma(s) / \left\| \frac{d}{ds} \gamma(s) \right\| \]

If the derivative already has unit length, then we say the curve is arc-length parameterized and can write the tangent as just

\[T(s) := \frac{d}{ds} \gamma(s) \]

*Assuming curve never slows to a stop, i.e., assuming it’s “regular”
Let’s compute the unit tangent of a circle:

\[\gamma : [0, 2\pi) \rightarrow \mathbb{R}^2; \ s \mapsto (\cos(s), \sin(s)) \]

\[\frac{d}{ds} \gamma(s) = (-\sin(s), \cos(s)) \]

\[\left| \frac{d}{ds} \gamma(s) \right| = \cos^2(s) + \sin^2(s) = 1 \]

\[\Rightarrow T = (-\sin(s), \cos(s)) \]
Informally, a vector is normal to a curve if it “sticks straight out” of the curve.

More formally, the unit normal (or just normal) can be expressed as a quarter-rotation \mathcal{J} of the unit tangent in the counter-clockwise direction:

$$N(s) := \mathcal{J} T(s)$$

In coordinates (x,y), a quarter-turn can be achieved by* simply exchanging x and y, and then negating y:

$$(x, y) \xrightarrow{\mathcal{J}} (-y, x)$$

*Why does this work?
Let’s compute the unit normal of a circle:

\[\gamma : [0, 2\pi) \rightarrow \mathbb{R}^2; \ s \mapsto (\cos(s), \sin(s)) \]

\[T(s) = (-\sin(s), \cos(s)) \]

\[N(s) = \mathcal{J}T(s) = (-\cos(s), -\sin(s)) \]

*Note: could also adopt the convention \(N = -\mathcal{J}T \).
(Just remain consistent!)*
Curvature of a Plane Curve

• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent*
Curvature of a Plane Curve

• Informally, curvature describes “how much a curve bends”

• More formally, the curvature of an arc-length parameterized plane curve can be expressed as the rate of change in the tangent*

\[\kappa(s) := \langle N(s), \frac{d}{ds} T(s) \rangle \]

\[= \langle N(s), \frac{d^2}{ds^2} \gamma(s) \rangle \]

Key Idea I
Curvature is a second derivative.

Key Idea II
Curvature is a signed quantity.

*Here, angle brackets denote the usual dot product: \(\langle (a, b), (x, y) \rangle := ax + by \)
Curvature: From Smooth to Discrete

Key Idea
Curvature is a second derivative.

\[\kappa = \langle \mathcal{J} \frac{d}{ds} \gamma, \frac{d^2}{ds^2} \gamma \rangle \]

Can we directly apply this definition to a discrete curve?
Curvature: From Smooth to Discrete

KEY IDEA
Curvature is a second derivative.

Can we directly apply this definition to a discrete curve?

No! Will get either zero or "∞". Need to think about it another way…
When is a Discrete Definition “Good?”

• How will we know if we came up with a good definition?
• Many different criteria for “good”:
 • satisfies (some of the) same properties/theorems as smooth curvature
 • converges to smooth value as we refine our curve
 • efficient to compute / solve equations
 • …
Playing the Game

- In the **smooth** setting, there are several other **equivalent** definitions of curvature.
- **IDEA:** perhaps some of these definitions can be applied **directly** to our discrete curve!
- Actually, all four can—and will have different consequences…
Turning Angle

• Our initial definition of curvature was the rate of change of the tangent in the normal direction:

\[\kappa(s) = \langle N(s), \frac{d}{ds} \gamma(s) \rangle \]

• Equivalently, we can measure the rate of change of the angle the tangent makes with the horizontal:

\[\kappa(s) = \frac{d}{ds} \varphi(s) \]
Integrated Curvature

• Still can’t evaluate curvature at vertices of a discrete curve (at what rate does the angle change?)

• But let’s consider the integral of curvature along a short segment:

\[\int_{a}^{b} \kappa(s) \, ds = \int_{a}^{b} \frac{d}{ds} \varphi(s) \, ds = \varphi(b) - \varphi(a) \]

• Instead of derivative of angle, we now just have a difference of angles.

• This definition works for our discrete curve!
Discrete Curvature (Turning Angle)

- This formula gives us our first definition of discrete curvature, as just the turning angle at the vertex of each curve*:

\[
\theta_i := \text{angle}(\gamma_i - \gamma_{i-1}, \gamma_{i+1} - \gamma_i)
\]

\[
\kappa_i^A := \theta_i \quad \text{(turning angle)}
\]

- Common theme: most natural discrete quantities are often \textit{integrated} rather than \textit{pointwise} values.

- Here: \textit{total change in angle}, rather than \textit{derivative of angle}.

*Note: Discrete curvature at a vertex of a curve is defined as the turning angle, which is the change in angle between two consecutive segments of the curve.
Length Variation

- Are there other ways to get a definition for discrete curvature?
- Well, here’s a useful fact about curvature from the smooth setting:

 The fastest way to decrease the length of a curve is to move it in the normal direction, with speed proportional to curvature.

- **Intuition**: in flat regions, normal motion doesn’t change curve length; in curved regions, the change in length (per unit length) is large:
Length Variation

• More formally, consider an *arbitrary* change in the curve γ, given by a function $\eta : [0, L] \rightarrow \mathbb{R}^2$ with $\eta(0) = \eta(L) = 0$.

\[\gamma + \varepsilon \eta \]
Length Variation

• More formally, consider an arbitrary change in the curve γ, given by a function $\eta : [0, L] \to \mathbb{R}^2$ with $\eta(0) = \eta(L) = 0$. Then

$$\left. \frac{d}{d\varepsilon} \right|_{\varepsilon=0} \text{length}(\gamma + \varepsilon \eta) = - \int_0^L \langle \eta(s), \kappa(s)N(s) \rangle \, ds$$

• Therefore, the motion that most quickly decreases length is $\eta = \kappa N$.
Gradient of Length for a Line Segment

• This all becomes much easier in the discrete setting: just take the gradient of length with respect to vertex positions.

• First, a warm-up exercise. Suppose we have a single line segment:

\[\ell := |b - a| \]

• Which motion of \(b \) most quickly increases this length?

\[\nabla_b \ell = (b - a)/\ell \]
Gradient of Length for a Discrete Curve

• To find the motion that most quickly increases the total length L, we now just sum the contributions of each segment:

• Using some simple trigonometry, we can also express the length gradient in terms of the exterior angle θ_i and the angle bisector N_i:

$$\nabla_{\gamma_i} L = 2 \sin(\theta_i/2) N_i$$

$$N_i := \frac{u_i + v_i}{|u_i + v_i|}$$
Discrete Curvature (Length Variation)

• How does this help us define discrete curvature?

• Recall that in the smooth setting, the gradient of length is equal to the curvature times the normal.

• Hence, our expression for the discrete length variation provides a definition for the discrete curvature times the discrete normal.

\[\kappa_i^B N_i := 2 \sin(\theta_i/2) N_i \]

(length variation)
A Tale of Two Curvatures

• To recap what we’ve done so far: we considered two equivalent definitions in the smooth setting:
 1. turning angle
 2. length variation

• These perspectives led to two inequivalent definitions of curvature in the discrete setting:
 1. $\kappa_i^A := \theta_i$
 2. $\kappa_i^B := 2 \sin(\theta_i / 2)$

• For small angles, both definitions agree ($\sin(\epsilon) \approx \epsilon$).
• Is one “better”? Are there more possibilities? Let’s keep going…
Steiner Formula

- Steiner’s formula is closely related to our last approach: it says that if we move at a constant speed in the normal direction, then the change in length is proportional to curvature:

\[
\text{length}(\gamma + \epsilon N) = \text{length}(\gamma) - \epsilon \int_0^L \kappa(s) \, ds
\]

- The intuition is the same as before: for a constant-distance normal offset, length will change in curved regions but not flat regions:
Discrete Normal Offsets

• How do we apply normal offsets in the discrete case?
• The first problem is that normals are not defined at vertices!
• We can at very least offset individual edges along their normals:

![Diagram showing discrete normal offsets]

• Question: how should we connect the normal-offset segments to get the final normal-offset curve?
Discrete Normal Offsets

• There are several natural ways to connect offset segments:
 (A) along a circular arc of radius ε
 (B) along a straight line
 (C) extend edges until they intersect

• If we now compute the total length of the connected curves, we get (after some work…):

$$\text{length}_A = \text{length}(\gamma) - \varepsilon \sum_i \theta_i$$
$$\text{length}_B = \text{length}(\gamma) - \varepsilon \sum_i 2 \sin(\theta_i / 2)$$
$$\text{length}_C = \text{length}(\gamma) - \varepsilon \sum_i 2 \tan(\theta_i / 2)$$
Discrete Curvature (Steiner Formula)

- Steiner’s formula says change in length is proportional to curvature.
- Hence, we get yet another definition for curvature by comparing the original and normal-offset lengths.
- In fact, we get three definitions—two we’ve seen and one we haven’t:

\[\kappa_i^A := \theta_i \]
\[\kappa_i^B := 2 \sin\left(\frac{\theta_i}{2}\right) \]
\[\kappa_i^C := 2 \tan\left(\frac{\theta_i}{2}\right) \]
Osculating Circle

• One final idea is to consider the osculating circle, which is the circle that best approximates a curve at a point \(p \).

• More precisely, if we consider a circle passing through \(p \) and two equidistant neighbors to the “left” and “right” (resp.), the osculating circle is the limiting circle as these neighbors approach \(p \).

• The curvature is then the reciprocal of the radius: \(\kappa(p) = \frac{1}{r(p)} \).
Discrete Curvature (Osculating Circle)

• A natural idea, then, is to consider the circumcircle passing through three consecutive vertices of a discrete curve:

\[w_i := |\gamma_{i+1} - \gamma_{i-1}| \]

• Our fourth discrete curvature is then the reciprocal of the radius:

\[\kappa_i^D := \frac{1}{r_i} = \frac{2 \sin(\theta_i)}{w_i} \]
A Tale of Four Curvatures

• Starting with four equivalent definitions of smooth curvature, we ended up with four inequivalent definitions for discrete curvature:

So… which one should we use?
Pick the Right Tool for the Job!

• **Answer:** pick the right tool for the job!

• For a given application, which properties are most important to us? How much computation are we willing to do? *Etc.*

• *E.g.*, for one physical simulation you might care most about energy; for another you might care about vorticity.

• What kind of trade offs do we have in geometric problems?
Curvature Flow
Toy Example: Curve Shortening Flow

• A simple version is curve shortening flow, where a closed curve moves in the normal direction with speed proportional to curvature:

\[\frac{d}{dt} \gamma(s, t) = \kappa(s, t)N(s, t) \]

• Some key properties:
 • (TOTAL) Total curvature remains constant throughout the flow.
 • (DRIFT) The center of mass does not drift from the origin.
 • (ROUND) Up to rescaling, the flow is stationary for circular curves.
Discrete Curvature Flow—No Free Lunch

- We can approximate curvature flow by repeatedly moving each vertex a little bit in the direction of the discrete curvature normal:
 \[\gamma_{i}^{t+1} = \gamma_{i}^{t} + \tau \kappa_{i} N_{i} \]

- But **no** choice of discrete curvature simultaneously captures all three properties of the smooth flow*:

*In fact, it’s impossible!
Beyond this “toy” problem, the no free lunch scenario is quite common when we try to find finite/computational versions of smooth objects.

Many examples (physics: conservation of energy, momentum, & symplectic form for conservative time integrators; geometry: discrete Laplace operators)

At a more practical level: The Game played in DDG often leads to new & unexpected approaches to geometric algorithms (simpler, faster, stronger guarantees, …)

Will see much more of this as the course continues!
Course Roadmap

Combinatorial Surfaces
Exterior Calculus
 Exterior Algebra (linear algebra)
 Differential Forms (3D calculus)
 Discrete Exterior Calculus
Surfaces
 Smooth
 Discrete
Curves (2D & 3D)
 Smooth
 Discrete

Curvature
 Laplace-Beltrami
 Geodesics
 Conformal Geometry
 (Additional Topics)

...don’t worry if these words sound intimidating right now!
Applications & Hands-On Exercises
Thanks!

Discrete Differential Geometry: An Applied Introduction

Keenan Crane • CMU 15-458/858B • Fall 2017