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EDITOR’S NOTE. The organizers of the two-day AMS
Short Course on Discrete Differential Geometry have
kindly agreed to provide this introduction to the
subject. The AMS Short Course runs in conjunction
with the 2018 Joint Mathematics Meetings.

The emerging field of discrete differential geometry (DDG)
studies discrete analogues of smooth geometric objects,
providing an essential link between analytical descrip-
tions and computation. In recent years it has unearthed a
rich variety of new perspectives on applied problems in
computational anatomy/biology, computational mechan-
ics, industrial design, computational architecture, and
digital geometry processing at large. The basic philoso-
phy of discrete differential geometry is that a discrete
object like a polyhedron is not merely an approximation
of a smooth one, but rather a differential geometric object
in its own right. In contrast to traditional numerical anal-
ysis which focuses on eliminating approximation error
in the limit of refinement (e.g., by taking smaller and
smaller finite differences), DDG places an emphasis on
the so-called “mimetic” viewpoint, where key properties
of a system are preserved exactly, independent of how
large or small the elements of a mesh might be. Just
as algorithms for simulating mechanical systems might
seek to exactly preserve physical invariants such as total
energy or momentum, structure-preserving models of
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Figure 1. Discrete differential geometry reimagines
classical ideas from differential geometry without
reference to differential calculus. For instance,
surfaces parameterized by principal curvature lines
are replaced by meshes made of circular
quadrilaterals (top left), the maximum principle
obeyed by harmonic functions is expressed via
conditions on the geometry of a triangulation (top
right), and complex-analytic functions can be
replaced by so-called circle packings that preserve
tangency relationships (bottom). These discrete
surrogates provide a bridge between geometry and
computation, while at the same time preserving
important structural properties and theorems.

discrete geometry seek to exactly preserve global geo-
metric invariants such as total curvature. More broadly,
DDG focuses on the discretization of objects that do not
naturally fall under the umbrella of traditional numerical
analysis. This article provides an overview of some of the
themes in DDG.
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Figure 2. A given geometric quantity from the smooth
setting, like curvature 𝜅, may have several reasonable
definitions in the discrete setting. Discrete
differential geometry seeks definitions that exactly
replicate properties of their smooth counterparts.

The Game
Our article is organized around a “game” often played in
discrete differential geometry in order to come up with a
discrete analogue of a given smooth object or theory:
(1) Write down several equivalent definitions in the

smooth setting.
(2) Apply each smooth definition to an object in the

discrete setting.
(3) Analyze trade-offs among the resulting discrete

definitions, which are invariably inequivalent.
Most often, none of the resulting discrete objects preserve
all the properties of the original smooth one—a so-
called no free lunch scenario. Nonetheless, the properties
that are preserved often prove invaluable for particular
applications and algorithms. Moreover, this activity yields
some beautiful and unexpected consequences—such as
a connection between conformal geometry and pure
combinatorics, or a description of constant-curvature
surfaces that requires no definition of curvature! To
highlight some of the challenges and themes commonly
encountered in DDG, we first consider the simple example
of the curvature of a plane curve.

Discrete Curvature of Planar Curves
How do you define the curvature of a discrete curve? For a
smootharc-lengthparameterized curve𝛾(𝑠) ∶ [0, 𝐿] → ℝ2,
curvature 𝜅 is classically expressed in terms of second
derivatives. In particular, if 𝛾 has unit tangent 𝑇 ∶= 𝑑

𝑑𝑠𝛾
and unit normal 𝑁 (obtained by rotating 𝑇 a quarter turn
in the counter-clockwise direction), then

(1) 𝜅 ∶= ⟨𝑁, 𝑑2

𝑑𝑠2 𝛾⟩ = ⟨𝑁, 𝑑
𝑑𝑠𝑇⟩ .

Suppose instead we have a polygonal curve with vertices
𝛾1,… ,𝛾𝑛 ∈ ℝ2, as often used for numerical computation
(see Figure 2, right). Here we hit upon the most elemen-
tary problem of discrete differential geometry: discrete
geometric objects are often not sufficiently differentiable
(in the classical sense) for standard definitions to apply.
For instance, our curvature definition (Equation 1) causes
trouble, since at vertices our discrete curve is not twice
differentiable, nor does it have well defined normals. The

basic approach of DDG is to find alternative characteriza-
tions in the smooth setting that can be applied to discrete
geometry in a natural way. With curvature, for instance,
we can apply the fundamental theorem of calculus to
Equation 1 to acquire a different statement: if 𝜑 is the
angle from the horizontal line to the unit tangent 𝑇, then

∫
𝑏

𝑎
𝜅 𝑑𝑠 = 𝜑(𝑏) −𝜑(𝑎) mod 2𝜋.

Putmore simply: curvature is the rate at which the tangent
turns. This characterization can be applied naturally to
our polygonal curve: along any edge the change in angle
is clearly zero. At a vertex it is simply the turning angle
𝜃𝑖 ∶= 𝜑𝑖,𝑖+1 −𝜑𝑖−1,𝑖 between the directions 𝜑𝑖−1,𝑖,𝜑𝑖,𝑖+1
of the two incident edges, yielding our first notion of
discrete curvature:
(2) 𝜅𝐴

𝑖 ∶= 𝜃𝑖 ∈ (−𝜋,𝜋).
Are there other characterizations that also lead naturally
to a discrete formulation? Yes: for instance we can
consider the motion of 𝛾 that most quickly reduces its
length. In the smooth case it is well known that the
change in length with respect to a smooth variation
𝜂(𝑠) ∶ [0, 𝐿] → ℝ2 that vanishes at the endpoints of the
curve is given by integration against curvature:

𝑑
𝑑𝜀|𝜀=0

length(𝛾 + 𝜀𝜂) = −∫
𝐿

0
⟨𝜂(𝑠), 𝜅(𝑠)𝑁(𝑠)⟩ 𝑑𝑠.

Hence, the velocity that most quickly reduces length is
𝜅𝑁. For a polygonal curve, we can simply differentiate
the sum of the edge lengths 𝐿 ∶= ∑𝑛−1

𝑖=1 |𝛾𝑖+1 − 𝛾𝑖| with
respect to any vertex position. At a vertex 𝑖 we obtain

(3) 𝜕𝛾𝑖𝐿 = 𝛾𝑖 −𝛾𝑖−1
|𝛾𝑖 −𝛾𝑖−1|

− 𝛾𝑖+1 −𝛾𝑖
|𝛾𝑖+1 −𝛾𝑖|

=∶ 𝑇𝑖−1,𝑖 −𝑇𝑖,𝑖+1,

i.e., just a difference of unit tangent vectors 𝑇𝑖,𝑖+1 along
consecutive edges. If 𝑁𝑖 ∈ ℝ2 is the unit angle bisector at
vertex 𝑖, this difference can also be expressed as
(4) 𝜅𝐵

𝑖 𝑁𝑖 ∶= 2 sin(𝜃𝑖/2)𝑁𝑖,

Figure 3. Different characterizations of curvature in
the smooth setting naturally lead to different notions
of discrete curvature. (Here we abbreviate 𝑇𝑖,𝑖+1 and
𝑇𝑖−1,𝑖 by 𝑢 and 𝑣, respectively.)
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providing a discretization of the curvature normal 𝜅𝑁.
A closely-related idea is to consider how the length of
a curve changes if we displace it by a small constant
amount in the normal direction. As observed by Steiner,
the new length of a smooth curve can be expressed as

(5) length(𝛾 + 𝜀𝑁) = length(𝛾) − 𝜀∫
𝐿

0
𝜅(𝑠) 𝑑𝑠.

Since this formula holds for any small piece of the
curve, it can be used to obtain a notion of curvature
at each point. How do we define normal offsets in the
polygonal case? At vertices we again encounter the issue
that we have no notion of normals. One idea is to break the
curve into individual edges which can then be translated
by 𝜀 along their respective normal directions. We can then
close the gaps between edges in a variety of ways: using
(A) a circular arc of radius 𝜀, (B) a straight line, or by
(C) extending the edges until they intersect (see Figure 3,
bottom left). If we then calculate the lengths for these
new curves, we get

length𝐴 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 𝜃𝑖,

length𝐵 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 2 sin(𝜃𝑖/2),

length𝐶 = length(𝛾) − 𝜀∑𝑛−1
𝑖=2 2 tan(𝜃𝑖/2).

Mirroring the observation in the smooth setting, we can
now say that whatever change we observe in the length
provides a definition for discrete curvature. The first two
are the same as ones we have seen already: the circular arc
yielding the expression from Equation 2, and the straight
line corresponding to Equation 4. The third one provides
yet another notion of discrete curvature

𝜅𝐶
𝑖 ∶= 2 tan(𝜃𝑖/2).

Finally, in the smooth case it is also well known that
curvature has magnitude equal to the inverse of the
radius of the so-called osculating circle, which agrees with
the curve up to second order. A natural way to define an
osculating circle for a polygon is to take the circle passing
through a vertex and its two neighbors. From the formula
for the radius 𝑅𝑖 of a circumcircle in terms of the side
lengths of the corresponding triangle, one easily gets a
discrete curvature that is different from the ones we saw
before:
(6) 𝜅𝐷

𝑖 ∶= 1/𝑅𝑖 = 2 sin(𝜃𝑖)/𝑤𝑖,

The fundamental
behavior of
geometry is

neither inherently
smooth nor
discrete.

where 𝑤𝑖 ∶= |𝛾𝑖+1 −
𝛾𝑖−1|. Apart from
merely being different
expressions,wecanno-
tice that 𝜅𝐴, 𝜅𝐵, and 𝜅𝐶

are all invariant under
a uniform scaling of
the curve, whereas 𝜅𝐷

scales like the smooth
curvature 𝜅. This sit-
uation demonstrates
another common phe-
nomenon in discrete
differential geometry, namely that depending on which
smooth characterization is used as a starting point, one

may end up with pointwise or integrated quantities in the
discrete case.

As one might imagine, there are many other possi-
ble starting points for obtaining a discrete analogue of
curvature. Eventually, however, all starting points end
up leading back to the same definitions, suggesting that
there may be only so many possibilities. For example, if
𝜙 ∶ ℝ2 → ℝ is the signed distance from a smooth closed
curve 𝛾, then applying the Laplacian Δ yields the curva-
ture of its level curves; in particular, Δ𝜙|𝜙=0 yields the
curvature of 𝛾. Likewise, if we apply the Laplacian to the
signed distance function for a discrete curve, we recover
𝜅𝐴 on one side and 𝜅𝐵 on the other. Yet another approach
is the theory of normal cycles (as discussed by Morvan),
related to the Steiner formula from Equation 5. Here,
rather than settle on a single normal 𝑁𝑖 at each vertex
we consider all unit vectors between the unit normals
of the two incident edges, ultimately leading back to the
first discrete curvature 𝜅𝐴. The theory of normal cycles
applies equally well to both smooth and polygonal curves,
again reinforcing the perspective that the fundamental
behavior of geometry is neither inherently smooth nor
discrete, but can be well captured in both settings by
picking the appropriate ansatz. More broadly, the fact
that equivalent characterizations in the smooth setting
lead to different inequivalent definitions in the discrete
setting is not special to the case of curves, but is one of
the central themes in discrete differential geometry.

From here, a natural question arises: which discrete
curvature is “best”? A traditional criterion for discrimi-
nating among different discrete versions is the question
of convergence: if we consider finer and finer approxi-
mating polygons, will our discrete curvatures converge to
the classical smooth one? However, convergence does not
always single out a best version: treated appropriately, all
four of our discrete curvatures will converge. We must

Figure 4. Typically, not all properties of a smooth
object can be preserved exactly at the discrete level.
For curve-shortening flow, for example, 𝜅𝐴 exactly
preserves the total curvature, 𝜅𝐵 exactly preserves
the center of mass, and with 𝜅𝐷 the flow remains
stationary (up to rescaling) for any circular solution.
However, no local definition of discrete curvature can
provide all three properties simultaneously.
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therefore look beyond convergence, toward exact preser-
vation of properties and relationships from the smooth
setting. Which properties should we try to preserve? The
answer of course depends on what we aim to use these
curvatures for.

As a toy example, consider the curve-shortening flow
(depicted in Figure 4, top left), where a curve evolves
according to the velocity that most quickly reduces
its length. As discussed above, this velocity is equal
to the curvature normal 𝜅𝑁. A smooth, simple curve
evolving under this flow exhibits several basic properties:
it has at all times total curvature 2𝜋, its center of
mass remains fixed, it tends toward a circle of vanishing
radius, and remains embedded for all time, i.e., no self-
crossings arise (Gage-Grayson-Hamilton). Do our discrete
curvatures furnish these same properties? A numerical
experiment is shown in Figure 4. Here we evolve our
polygon by a simple time-discrete flow 𝛾𝑖 ← 𝛾𝑖 + 𝜏𝜅𝑖𝑁𝑖
with a fixed time step 𝜏 > 0. For 𝜅𝐷, 𝑁𝑖 is the unit vector
along the circumradius; otherwise it is the unit angle
bisector. Not surprisingly, 𝜅𝐴 preserves total curvature
(due to the fundamental theorem of calculus); 𝜅𝐵 does
not drift (consider summing Equation 3 over all vertices);
and 𝜅𝐷 has circular polygons as limit points (since
all velocities point toward the center of a common
circle). However, no discrete curvature satisfies all three
properties simultaneously. Moreover, for a constant time
step 𝜏 no such flow can guarantee that new crossings
do not occur. This situation illustrates the no free lunch
idea: no matter how hard we try, we cannot find a single
discrete object that preserves all the properties of its
smooth counterpart. Instead, we have to pick and choose
the properties best suited to the task at hand.

Suppose that instead of curvature flow, we consider
two other beautiful topics in the geometry of plane
curves: the Whitney–Graustein theorem, which classifies
regular homotopy classes of curves by their total curva-
ture, and Kirchhoff’s famous analogy between motions
of a spherical pendulum and elastic curves, i.e., curves
that extremize the bending energy ∫𝐿0 𝜅2 𝑑𝑠 subject to
boundary conditions. Among the curvatures discussed
above, only 𝜅𝐴 provides a discrete version of Whitney–
Graustein, but does not provide an exact discrete analogue
of Kirchhoff. Likewise, 𝜅𝐶 preserves the structure of the
Kirchhoff analogy, but not Whitney–Graustein. This kind
of no free lunch situation is a characteristic feature of
DDG. A similar obstacle is encountered in the theory of
ordinary differential equations, where it is known that
there are no numerical integrators for Hamiltonian sys-
tems that simultaneously conserve energy, momentum,
and the symplectic form. From a computational point of
view, making judicious choices about which quantities
to preserve for which applications goes hand-in-hand
with providing formal guarantees on the reliability and
robustness of algorithms.

We now give a few glimpses into recent topics and
trends in DDG.

Figure 5. What is the simplicial analogue of a
conformal map? Requiring all angles to be preserved
is too rigid, forcing a global similarity (left). Asking
only for preservation of so-called length cross ratios
provides just the right amount of flexibility,
maintaining much of the structure found in the
smooth setting such as invariance under Möbius
transformations (right).

Discrete Conformal Geometry
A conformal map is, roughly speaking, a map that pre-
serves angles (see Figure 1, bottom left). A good example
is Mercator’s projection of the globe: even though area
gets stretched out badly—making Greenland look much
bigger than Australia!—the directions “north” and “east”
remain at right angles, which is very helpful if you are
trying to navigate the sea. A beautiful fact about confor-
mal maps is that any surface can be conformally mapped
to a space of constant curvature (“uniformization”), pro-
viding it with a canonical geometry. This fact, plus the
fact that conformal maps can be efficiently computed
(e.g., by solving sparse linear systems), have led in recent
years to widespread development of conformal mapping
algorithms as a basic building block for digital geometry
processing algorithms. In applications, discrete confor-
mal maps are used for everything from sensor network
layout to comparative analysis of medical or anatomical
data. Of course, to process real data one must be able to
compute conformal maps on discrete geometry.

What does it mean for a discrete map to be conformal?
As with curvature, one can play the game of enumerating
several equivalent characterizations in the smooth setting.
Consider for instance a map 𝑓 ∶ 𝑀 → 𝐷2 ⊂ ℂ from a disk-
like surface 𝑀 with Riemannian metric 𝑔 to the unit disk
𝐷2 in the complex plane. This map is conformal if it

too few degrees of
freedom relative to

the number of
constraints

preserves angles, if
it preserves infinitesi-
mal circles, if it can
be expressed as a pair
of real conjugate har-
monic functions 𝑓 =
𝑎+ 𝑏𝑖, if it is a critical
point of the Dirichlet
energy ∫𝑀 |𝑑𝑓|2 𝑑𝐴, or

if it induces a new metric ̃𝑔 ∶= 𝑑𝑓 ⊗ 𝑑𝑓 that at each
point is a positive rescaling of the original one: ̃𝑔 = 𝑒2𝑢𝑔.
Each starting point leads down a path toward different
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consequences in the discrete setting, and to algorithms
with different computational tradeoffs.

Oddly enough, the most elementary characterization
of conformal maps, angle preservation, does not translate
very well to the discrete setting (see Figure 5). Consider
for instance a simplicial map that takes a triangulated
disk 𝐾 = (𝑉,𝐸,𝐹) to a triangulation in the plane. Any
map that preserves interior angles will be a similarity on
each triangle, i.e., it can only rigidly rotate and scale. But
since adjacent triangles share edges, the scale factor for
all triangles must be identical. Hence, the only discrete
surfaces that can be conformally flattened in this sense
are those that are (up to global scale) developable, i.e.,
that can be rigidly unfolded into the plane. This outcome
is in stark contrast to the smooth setting, where any
disk can be conformally flattened. This situation reflects
a common scenario in DDG: rigidity, or what in finite
element analysis is sometimes called locking. There are
simply too few degrees of freedom relative to the number
of constraints: we want to match angles at all 3𝐹 corners,
but have only 2𝑉 < 3𝐹 degrees of freedom. Hence, if
we insist on angle preservation we have no chance of
capturing the flexibility of smooth conformal maps.

Other characterizations provide greater flexibility. One
idea is to associate each vertex of our discrete disk𝐾with
a circle in the plane. A theorem of Koebe implies that one
can always arrange these circles such that two circles are
tangent if they belong to a shared edge and all boundary
circles are tangent to a common circle bounding the rest.
For a regular triangular lattice approximating a region
𝑈 ⊂ ℂ, Thurston noticed that this map approximates a
smooth conformalmap 𝑓 ∶ 𝑈 → 𝐷2 as the region isfilledby
smaller and smaller circles (see Figure 1, bottom), as later
proved by Rodin and Sullivan. Unlike a traditional finite
element discretization, these so-called circle packings
also preserve many of the basic structural properties of
conformal maps. For instance, composition with a Möbius
transformation of the disk yields another uniformization
map, as in the smooth setting. More broadly, circle
packings provide an unexpected bridge between geometry
and combinatorics, since the geometry of a map is
determined entirely by incidence relationships.1 On the
flip side, this means a different theory is needed to
account for the geometry of irregular triangulations, as
more commonly used in applications.

An alternative theory starts from the idea that under
a conformal map the Riemannian metric 𝑔 experiences a
uniform scaling at each point: ̃𝑔 = 𝑒2𝑢𝑔. In other words,
vectors tangent to a given point 𝑝 ∈ 𝑀 shrink or grow
by a positive factor 𝑒𝑢. In the simplicial setting 𝑔 is
replaced by a piecewise Euclidean metric, i.e., a collection
of positive edge lengths ℓ ∶ 𝐸 → ℝ>0 that satisfy the
triangle inequality in each face. Two such metrics ℓ, ̃ℓ
are then said to be discretely conformally equivalent if
they are related by ̃ℓ𝑖𝑗 = 𝑒(𝑢𝑖+𝑢𝑗)/2ℓ𝑖𝑗 for any collection of
discrete scale factors𝑢 ∶ 𝑉 → ℝ. Thoughatfirst glance this

1See “Circle Packing” in the December 2003 Notices www.ams
.org/notices/200311/fea-stephenson.pdf.

relationship looks like a simple numerical approximation,
it turns out to provide a complete discrete theory that
preserves much of the structure found in the smooth
setting, with close ties to theories based on circles. An
equivalent characterization is the preservation of length
cross ratios 𝔠𝑖𝑗𝑘𝑙 ∶= ℓ𝑖𝑗ℓ𝑘𝑙/ℓ𝑗𝑘ℓ𝑙𝑖 associated with each
edge ∈ 𝐸; for a mesh embedded in ℝ𝑛 these ratios are
invariant underMöbius transformations, againmimicking
the smooth theory. This theory also leads to efficient,
convex algorithms for discrete Ricci flow, which is a
starting point for many applications in digital geometry
processing.

More broadly, discrete conformal geometry and dis-
crete complex analysis is an active area of research, with
elegant theories not only for triangulations but also for
lattice-based discretizations, whichmake contact with the
topic of (discrete) integrable systems, discussed below.
Yet basic questions about properties like convergence, or
descriptions that are compatible with extrinsic geometry,
are still only starting to be understood.

Discrete Differential Operators
Differential geometry and in particular Riemannian man-
ifolds can be studied from many different perspectives.
In contrast to the purely geometric perspective (based
on, say, notions of distance or curvature), differential
operators provide a very different point of view. One
of the most fundamental operators in both physics and
geometry is the Laplace–Beltrami operatorΔ (or Laplacian
for short) acting on differential 𝑘-forms. It describes, for
example, heat diffusion, wave propagation, and steady
state fluid flow, and is key to the Schrödinger equation
in quantum mechanics. It also provides a link between
analytical and topological information: for instance, on
closed Riemannian manifolds the dimension of harmonic
𝑘-forms (i.e., those in the kernel of Δ) equals the di-
mension of the 𝑘th cohomology—a purely topological
quantity. The spectrum of the Laplacian (i.e., the list
of eigenvalues) likewise reveals a great deal about the
geometry of the manifold. For example, the first nonzero
eigenvalue of the 0-form Laplacian provides an upper and
a lower bound on optimally cutting a compact Riemannian
manifold 𝑀 into two disjoint pieces of, loosely speaking,
maximal volume and minimal perimeter (Cheeger-Buser).
These so-called Cheeger cuts have a wide range of ap-
plications across machine learning and computer vision;
more broadly, eigenvalues and eigenfunctions of Δ help
to generalize traditional Fourier-based simulation and
signal processing to more general manifolds.

These observations motivate the study of discrete
Laplacians, which can be defined even in the purely com-
binatorial setting of graphs. Here we briefly outline their
definition for orientable finite simplicial 𝑛-manifolds,
such as polyhedral surfaces, without boundary. Our ex-
position is similar to what has become known as discrete
exterior calculus. To this end, consider the simplicial
boundary operators 𝜕𝑘 ∶ 𝐶𝑘 → 𝐶𝑘−1 acting on 𝑘-chains
(i.e., formal linear combinations of 𝑘-simplices). The cor-
responding dual spaces (cochains) 𝐶𝑘 ∶= Hom(𝐶𝑘, ℝ) and
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respective dual operators 𝛿𝑘 ∶ 𝐶𝑘 → 𝐶𝑘+1 give rise to the
chain complex

{0} → 𝐶0 → 𝐶1 → … → 𝐶𝑛 → {0}.
The chain property says that 𝛿𝑘∘𝛿𝑘−1 = 0, and one hence
obtains simplicial cohomology 𝐻𝑘 ∶= ker(𝛿𝑘)/im(𝛿𝑘−1).
To define a Laplacian in this setting, we equip each 𝐶𝑘

with a positive definite inner product (⋅, ⋅)𝑘, and let 𝛿∗
𝑘 be

the adjoint operator with respect to these inner products,
i.e., (𝛿𝑘𝛼,𝛽)𝑘+1 = (𝛼,𝛿∗

𝑘 𝛽)𝑘 for all 𝛼,𝛽. The Laplacian on
𝑘-cochains is then defined as

Δ𝑘 ∶= 𝛿∗
𝑘 𝛿𝑘 +𝛿𝑘−1𝛿∗

𝑘−1.
The resulting space of harmonic 𝑘-cochains, {𝛼 ∈
𝐶𝑘|Δ𝑘𝛼 = 0} is then isomorphic to 𝐻𝑘—just as in
the smooth setting. This fact is independent of the
choice of inner product, mirroring the fact that coho-
mology depends only on topological structure. Likewise,
for any inner product one obtains a discrete Hodge
decomposition

𝐶𝑘 = ker(Δ𝑘) ⊕ im(𝛿𝑘−1) ⊕ im(𝛿∗
𝑘 ),

where here the subspaces do depend on the choice of
inner product.

At this point we return again to the game of DDG:
which choice of inner product is best? A trivial inner
product leads to purely combinatorial graph Laplacians,
which do not (in general) converge to their smooth coun-
terparts (e.g., when approximating a smooth manifold by
a polyhedral one). Another choice is to consider linear
interpolation of 𝑘-cochains over 𝑛-dimensional simplices,
resulting in what is known asWhitney elements. For 𝑛 = 2,
we get the so-called cotan Laplacian (Pinkall and Polth-
ier), which is widely used in digital geometry processing.
Though other choices are possible, we again encounter
a no free lunch situation: no choice of inner product
can preserve all the properties of the smooth Laplacian.
Which properties do we care about? Beyond convergence,
perhaps the most desirable properties are the maximum
principle (which ensures, for instance, proper behavior
for heat flow), and the property that, for flat domains,
linear functions are in the kernel (leading to a proper
definition of barycentric coordinates). For general un-
structured meshes there are no discrete Laplacians with
all of these properties. However, certain types of meshes
(such asweighedDelaunay triangulations)do indeed allow
for “perfect” discrete Laplacians, offering a connection
between geometry and (discrete) differential operators.

Discrete Integrable Systems
Another topic that has provided inspiration for many
ideas in DDG is parameterized surface theory. Consider
for instance the problem of dressing a given surface
by a fishnet stocking, i.e., a woven material composed of
inextensible yarns following transversal “warp” and “weft”
directions (see Figure 6, right). This task corresponds to
decorating a surface with a tiling where each vertex
is incident to four parallelograms. Infinitesimally, such a
tiling is known as aweakChebyshev net (Chebyshev 1878),
and locally corresponds to a regularly parameterized

surface 𝑓 ∶ 𝑈 ⊂ ℝ2 → ℝ3 where the directional derivatives
𝑓𝑢 and 𝑓𝑣 along the coordinate directions satisfy |𝑓𝑢|𝑣 =
|𝑓𝑣|𝑢 = 0, i.e., partial derivatives with respect to one
parameter have constant length along the parameter
lines of the other parameter. The special case of rhombic
tilings (|𝑓𝑢| = |𝑓𝑣| = 1) are known as (strong) Chebyshev
nets. Can every smooth surface be wrapped in a stocking?
Locally (i.e., in a small patch around any given point)
the answer is “yes.” Globally, however, there are severe
obstructions to doing so, which provide some fascinating
connections to physics.

Consider for instance the special case of so-called
K-surfaces, characterized by constant Gauß curvature
𝐾 = −1. Every K-surface admits a parameterization 𝑓 ∶
𝑈 ⊂ ℝ2 → ℝ3 aligned with the two transversal asymptotic
directions along which normal curvature vanishes. Hence,
if 𝑁 is the unit surface normal then
(7) ⟨𝑓𝑢𝑢,𝑁⟩ = ⟨𝑓𝑣𝑣,𝑁⟩ = 0.
Asymptotic parameterizations are weak Chebyshev nets
since
(8) 𝑎 ∶= |𝑓𝑢|, 𝑏 ∶= |𝑓𝑣| satisfy 𝑎𝑣 = 𝑏𝑢 = 0.
Moreover, one can show that the angle 𝜙 between
asymptotic lines satisfies the sine-Gordon equation

(9) 𝜙𝑢𝑣 −𝑎𝑏 sin𝜙 = 0,
and conversely, every solution to the sine-Gordon equa-
tion describes a parameterized K-surface. Hilbert used
this equation (and Chebyshev nets) to prove that the com-
plete hyperbolic plane cannot be embedded isometrically
into ℝ3. More generally, the sine-Gordon equation has
attracted much interest both in mathematics as an exam-
ple of an infinite-dimensional integrable system, and in
physics as an example of a system that admits remarkably
stable soliton solutions, akin to waves that travel uninter-
rupted all the way across the ocean. Another key property
of the sine-Gordon equation is the existence of a so-called
spectral parameter 𝜆 > 0: Equation 9 is invariant under
a rescaling 𝑎 → 𝜆𝑎 and 𝑏 → 𝜆−1𝑏, giving rise to a one-
parameter associated family of K-surfaces. Geometrically,
the parameter 𝜆 rescales the edges of parallelograms
while preserving the angle between asymptotic lines.

Do these properties depend critically on the smooth
nature of the solutions, or can they also be faithfully
captured in the discrete setting? Hirota derived such a
discrete version without any reference to geometry. Later
Bobenko and Pinkall suggested a geometric definition of
discrete K-surfaces that recovers Hirota’s equation. In
their setting, discrete K-surfaces are defined as discrete
(weak) Chebyshev nets with the additional property that
all four edges incident to any vertex lie in a common
plane. The last requirement is a natural discrete analogue
of Equation 7. This definition of discrete K-surfaces also
comes with a spectral parameter 𝜆 and results in Hirota’s
discrete sine-Gordon equation—without requiring any
notion of discrete Gauß curvature. Only recently has a
discrete version of Gauß curvature been suggested that
results in discrete K-surfaces indeed having constant
negative Gauß curvature.
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COMMUNICATION

Figure 6. Left: two discrete parameterizations of a
pseudosphere (constant Gauß curvature 𝐾 = −1), one
with a Chebychev net along asymptotic directions
(left) and another along principal curvature lines
(right). Right: a discrete Chebyshev net on a surface
of varying curvature, resembling the weft and warp
directions of a woven material.

Figure 7. Discrete parameterized surfaces play a role
in architectural geometry, where special incidence
relationships on quadrilaterals translate to
manufacturing constraints like zero nodal torsion, or
offset surfaces of constant thickness. Here a
curvature line parameterized surface discretized by a
conical net is used in the design of a railway station.

For discrete K-surfaces with all equal edge lengths
(i.e., the rhombic case) the four neighboring vertices
of a given vertex must lie on a common circle. By
considering a subset of the diagonals of the quadrilaterals,
one obtains another quad mesh with the property that
all quads have a circumscribed circle, resulting in so-
called cK-nets (see Figure 6, left). In the discrete setting,
regular networks of circular quadrilaterals play the role
of curvature line parameterized surfaces (as in Figure
1, top left). This transformation therefore mimics the
smooth setting, where the angle bisectors of asymptotic
lines are lines of principal curvature. More broadly, the
theory of quad nets with special incidence relationships is
closely linked to physical manufacturing considerations
in the field of architectural geometry. For example, a quad
net is conical if the four quads around each vertex are
tangent to a common cone—such surfaces admit face
offsets of constant width, making them attractive for the
construction of (for instance) glass-paneled structures, as
in Figure 7.

For further reading, see Discrete Differential Geometry
(2008, Alexander Bobenko ed.).
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