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Abstract We define a discrete Laplace–Beltrami operator for simplicial surfaces
(Definition 16). It depends only on the intrinsic geometry of the surface and its
edge weights are positive. Our Laplace operator is similar to the well known finite-
elements Laplacian (the so called “cotan formula”) except that it is based on the
intrinsic Delaunay triangulation of the simplicial surface. This leads to new defini-
tions of discrete harmonic functions, discrete mean curvature, and discrete minimal
surfaces. The definition of the discrete Laplace–Beltrami operator depends on the ex-
istence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the
existence is known, we prove the uniqueness. Using Rippa’s Theorem we show that,
as claimed, Musin’s harmonic index provides an optimality criterion for Delaunay tri-
angulations, and this can be used to prove that the edge flipping algorithm terminates
also in the setting of piecewise flat surfaces.

Keywords Laplace operator · Delaunay triangulation · Dirichlet energy · Simplicial
surfaces · Discrete differential geometry

1 Dirichlet Energy of Piecewise Linear Functions

Let S be a simplicial surface in 3-dimensional Euclidean space, i.e. a geometric sim-
plicial complex in R

3 whose carrier S is a 2-dimensional submanifold, possibly with
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Fig. 1 The α-angles of an
internal edge

boundary. We assume S to be finite. Let V = {x1, . . . , x|V |}, E, and F be the sets of
vertices, edges and (triangular) faces of S . Let f : S → R be a piecewise linear (PL)
function on S (linear on each simplex of S). Then the gradient ∇f is constant on
each triangle. The Dirichlet energy E(f ) = 1

2

∫
S
‖∇f ‖2 is

E(f ) = 1

2

∑

(xi ,xj )∈E

wij (f (xi) − f (xj ))
2,

where the edge weights are

wij =
{

1
2 (cotαij + cotαji) for interior edges,
1
2 cotαij for boundary edges

and αij , αji are the angle(s) opposite edge (xi, xj ) in the adjacent triangle(s) (see
Fig. 1). This formula was, it seems, first derived by Duffin [7], who considers tri-
angulated planar regions. It follows (by summation over the triangles) from the ob-
servation that the Dirichlet energy of a linear function on a triangle (x1, x2, x3) with
angles α1, α2, α3 is E(f|(x1,x2,x3)) = 1

4

∑
i∈Z/3Z

cotαi (f (xi+1) − f (xi+2))
2.

In analogy to the smooth case, the Laplace operator is defined as the gradient of
the Dirichlet energy. (We identify the vector space of PL functions S → R with the
vector space R

V of functions on the vertices.) By differentiating E(f ) with respect
to the value of f at a vertex xi ∈ V one obtains the “cotan formula” for the Laplace
operator:

�f (xi) =
∑

xj ∈V :(xi ,xj )∈E

wij (f (xi) − f (xj )).

Dziuk was the first to treat a finite element approach for the Laplace operator on sim-
plicial surfaces, but without stating the cotan formula explicitly [9]. It seems to have
been rediscovered by Pinkall and Polthier in their investigation of discrete minimal
surfaces [17], and turned out to be extremely important in geometry processing where
it found numerous applications, e.g. [4, 6] to name but two. In particular, harmonic
parameterizations u : V → R

2 are used in computer graphics for texture mapping.
The cotan-formula also forms the basis for a theory of discrete holomorphic func-
tions and discrete Riemann surfaces [8, 15].

Two important disadvantages of this definition of a discrete Laplace operator are:
1. The weights may be negative. The properties of the discrete Laplace opera-

tor with positive weights (wij > 0) are analogous to the properties of the classical
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Laplace–Beltrami operator on a surface with Riemannian metric. In particular the
maximum principle holds. But some weights wij may be negative, and this leads to
unpleasant phenomena: The maximum principle does not hold. As a consequence,
a vertex of a discrete minimal surface (as defined by Pinkall & Polthier [17]) may
not be contained in the convex hull of its neighbors. In texture mapping applications
negative weights are undesirable because they lead to “flipped triangles”. In practice
various tricks are used to avoid negative weights.

2. The definition is not purely intrinsic. The classical Laplace–Beltrami operator
is intrinsic to a Riemannian manifold: It depends only on the Riemannian metric.
This is not the case with the discrete Laplace operator defined above. Two simplicial
surfaces which are isometric but which are not triangulated in the same way give
in general rise to different Laplace operators. As the simplest example, consider the
two triangulations of a planar quadrilateral. They lead to different discrete Laplace
operators. (Planarity is not what causes the problem since the quadrilateral may also
be folded along either of its diagonals.)

The key idea of this paper is that one can avoid both the above shortcomings
by using the intrinsic Delaunay triangulation of the surface S to define the discrete
Laplace operator (Definition 16) instead of the triangulation that comes from the
simplicial complex S .

2 Delaunay Triangulations of Piecewise Flat Surfaces

This section provides the necessary background on Delaunay tessellations of piece-
wise flat surfaces. We decided to give a detailed exposition because not all necessary
proofs can be found elsewhere.

The concept of a Delaunay triangulation in n-dimensional Euclidean space goes
back to Delaunay [5]. Piecewise flat surfaces (Definition 1) were studied by (his stu-
dent) Alexandrov [1] and more recently by Troyanov [20]. The idea of a Delaunay
triangulation of a piecewise flat surface was apparently first considered by Rivin [19,
Sect. 10]. The vertex set of the Delaunay triangulation is assumed to contain the set
of cone points of the piecewise flat surface, so that the surface is flat away from
the vertices. (This is very different from considering Delaunay triangulations in sur-
faces with Riemannian metric [13].) Rivin claims but does not prove an existence and
uniqueness theorem for Delaunay triangulations in piecewise flat surfaces. His proof
that the edge flipping algorithm terminates is flawed (see the discussion after Propo-
sition 12 below). A correct proof was given by Indermitte et al. [11]. (They seem
to miss a small detail, a topological obstruction to edge-flipability. See our proof
of Proposition 11.) Furthermore, for our definition of the discrete Laplace–Beltrami
operator we also need the uniqueness of the Delaunay tessellation, and this ques-
tion has not been addressed properly. Rivin and Indermitte et al. define Delaunay
triangulations by the local Delaunay criterion (see Definition 8), and infer existence
via the edge flipping algorithm (see Proposition 12). To obtain uniqueness, we will
define the Delaunay tessellation (whose faces are generically but not always triangu-
lar) via a global empty circle criterion (Definition 3). In a piecewise flat surface, the
“empty circumcircles” are immersed empty disks (Definition 2) which may overlap
themselves. Consequently, some work is required to show that this actually defines a
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(not necessarily regular) cell decomposition of the surface. Uniqueness, on the other
hand, is immediate from this definition. We will also show that the local Delaunay
criterion implies the global empty circumcircle condition. A Delaunay triangulation
is obtained from the Delaunay tessellation by triangulating the non-triangular faces.
It follows that a Delaunay triangulation, while in general not unique, differs from
another Delaunay triangulation only by edges with vanishing cot-weights. This is
important because it means that the discrete Laplace–Beltrami operator that will be
defined in Section 3 depends only on the intrinsic geometry of the surface.

Definition 1 A piecewise flat surface (PF surface) (S, d) is a 2-dimensional differ-
ential manifold S, possibly with boundary, equipped with a metric d which is flat
except at isolated points, the cone points, where d has cone-like singularities.

In other words, every interior point of a piecewise flat surface has a neighborhood
which is isometric to either a neighborhood of the Euclidean plane or to a neighbor-
hood of the apex of a Euclidean cone. The cone angle at the apex may be greater than
2π . (For a more detailed definition of closed PF surfaces see Troyanov [20].) In this
paper, we consider only compact surfaces and we require the boundary (if there is a
boundary) to be piecewise geodesic. (The interior angle at a corner of the boundary
may be greater than 2π .)

A tessellation of a PF surface is a cell decomposition such that the faces are
Euclidean polygons which are glued together along their edges. This implies that
the cone points and the corners of the boundary are vertices of the cell decomposi-
tion. A triangulation is a tessellation where the faces are triangles. For the following
it is essential that we do not require tessellations (and in particular triangulations) to
be a regular cell complexes, i.e. a gluing homomorphism may identify points on the
boundary of a cell. For example, it is allowed that two edges of a face may be glued
to each other; and an edge may connect a vertex with itself. A forteriori, we do not
require a tessellation to be strongly regular, i.e. the intersection of two closed cells
may not be a single closed cell.

Remark From the intrinsic point of view, the carrier S of a simplicial surface S with
the metric induced by the ambient Euclidean space is a piecewise flat surface. The
simplicial surface S also provides S with a triangulation whose vertex set includes
the cone points and the corners of the boundary. However, this triangulation is not
intrinsically distinguished from other triangulations with the same vertex set.

First, we will consider surfaces without boundary. To define the Delaunay tessella-
tion of a PF surface in terms of empty disks, we must allow an empty disk to overlap
with itself:

Definition 2 (Immersed empty disk). Let (S, d) be a compact PF surface without
boundary, and let V ⊂ S be a finite set of points which contains all cone points. An
immersed empty disk is continuous map ϕ : D̄ → S, where D is an open round disk in
the Euclidean plane and D̄ is its closure, such that the restriction ϕ|D is an isometric
immersion (i.e. every p ∈ D has a neighborhood which is mapped isometrically) and
ϕ(D) ∩ V = ∅.
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Hence any points in ϕ−1(V ) are contained in the boundary of D: ϕ−1(V ) ⊂ ∂D.

Definition 3 (Delaunay tessellation, no boundary). Let (S, d) be a compact PF sur-
face without boundary, and let V ⊂ S be a finite set of points which contains all cone
points. The Delaunay tessellation of (S, d) on the vertex set V is the cell decom-
position with the following cells: A subset C ⊂ S is a closed cell of the Delaunay
tessellation iff there exists an immersed empty disk ϕ : D̄ → S such that ϕ−1(V ) is
non-empty and C is the image of the convex hull of ϕ−1(V ): C = ϕ(convϕ−1(V )).
The cell-attaching map is ϕ|convϕ−1(V ); and the cell is a 0-cell (vertex), 1-cell (edge),
or 2-cell (face) if ϕ−1(V ) contains one, two, or more points; respectively.

Proposition 4 The Delaunay tessellation as defined above is really a tessellation of
(S, d).

Proof Let us first remark that the vertex set of the Delaunay tessellation is obviously
V . An edge e is a geodesic segment such that there exists an immersed empty disk
ϕ : D̄ → S with ϕ−1(V ) containing exactly two points, ϕ−1(V ) = {p1,p2} such that
e = ϕ([p1,p2]), where [p1,p2] is the line segment joining p1 and p2 in D. That the
vertices and edges form a 1-dimensional cell complex then follows from Lemma 5 be-
low.

Then we have to show that the open faces are indeed homeomorphic to open disks.
(A cell attaching map ϕ : |convϕ−1(V ) is a priori only an immersion of the interior of
the domain.) This follows from Lemma 6.

It is comparatively easy to see that the cell attaching homeomorphism ϕ maps the
boundary ∂ conv{p1,p2, . . . , pn} into the 1-skeleton; and that edges do not intersect
open faces. We omit the details.

Finally, Lemma 7 asserts that every point in S is contained in a closed cell. �

Lemma 5 The edges do not cross each other or themselves.

Proof Let e = ϕ([p1,p2]) and ẽ = ϕ̃([p̃1, p̃2]) be edges contained in the empty im-

mersed disks ϕ : D̄ → S and ϕ̃ : ¯̃
D → S, respectively, such that p1, p2 are the only

points in ϕ−1(V ) and p̃1, p̃2 are the only points in ϕ̃−1(V ). Suppose e and ẽ have an
interior point in common: ϕ(q) = ϕ̃(q̃) with q ∈ (p1,p2) and q̃ ∈ (p̃1, p̃2). We are
going to show that

ϕ−1(ẽ) = [p1,p2]. (1)

Since ϕ̃(p̃1), ϕ̃(p̃2) 	∈ ϕ(D) the Intersecting Chord Theorem implies

‖p1 − q‖ · ‖p2 − q‖ ≤ ‖p̃1 − q̃‖ · ‖p̃1 − q̃‖,
where ‖.‖ denotes the Euclidean norm; see Fig. 2. The opposite inequality follows
equally. Hence ϕ−1(ϕ̃(p̃1)) and ϕ−1(ϕ̃(p̃2)) must be contained in ∂D. Since p1 and
p2 are the only points in ϕ−1(V ), this implies (1). �

Lemma 6 Let ϕ : D̄ → S be an immersed empty disk and suppose ϕ−1(V ) =
{p1,p2, . . . , pn} with n ≥ 3. Let P = conv{p1,p2, . . . , pn}. Then the restriction
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Fig. 2 The Intersecting Chord
Theorem says that
‖p1 − q‖ · ‖p2 − q‖ =
‖x1 − q‖ · ‖x2 − q‖

Fig. 3 The dashed lines mark
the boundaries of the circular
segments conv((∂D) \ D̃) and
conv((∂D̃) \ D)

ϕ|intP of ϕ to the interior of P is injective (and hence a homeomorphism intP →
ϕ(intP)).

Proof Suppose q ∈ intP and q̃ ∈ D with q 	= q̃ but ϕ(q) = ϕ(q̃). We will show that
q̃ 	∈ intP .

Because ϕ|D is an isometric immersion, there is a neighborhood q � U ⊂ D and
an isometry T of the Euclidean plane such that T (q) = q̃ , T (U) ⊂ D, and ϕ(T (x)) =
ϕ(x) for all x ∈ U . Let D̃ = T (D) and ϕ̃ = ϕ ◦T −1 : ¯̃

D → S. Since ϕ and ϕ̃ agree on

the intersection D ∩ D̃, there is a continuous map ϕ̂ : D ∪ D̃ → S such that ϕ̂|D̄ = ϕ

and ϕ̂| ¯̃
D

= ϕ̃.

Now let p̃i = T (pi) (i = 1, . . . n) and P̃ = T (P ) = conv{p̃1, p̃2, . . . , p̃n}. Then P

and P̃ have no common interior points: intP ∩ int P̃ = ∅. Indeed, since D and D̃ are
“empty”, {p1,p2, . . . , pn} ⊂ (∂D)\ D̃ and {p̃1, p̃2, . . . , p̃n} ⊂ (∂D̃)\D. Hence P ⊂
conv((∂D)\ D̃) and P̃ ⊂ conv((∂D̃)\D). But the circular segments conv((∂D)\ D̃)

and conv((∂D̃) \ D) have no interior points in common. (See Fig. 3.)
Now q̃ ∈ int P̃ implies q̃ 	∈ intP . �

Lemma 7 Every point x ∈ S is contained in a closed cell.

Proof Consider two immersed disks ϕ : D̄ → S, ϕ̃ : ¯̃
D → S as equivalent if they

differ only by a change of parameter, i.e. if ϕ̃ = ϕ ◦ T for some isometry of the
Euclidean plane. The manifold of equivalence classes is parameterized by the set

D = {
(c, r) ∈ S × R>0 | d(c,V ) ≥ r

}
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Fig. 4 If p is not contained in
the convex hull of
ϕ−1(V ) = {p1, . . . , pn}, then
there is another immersed empty
disk with smaller power (see
proof of Lemma 7)

of center/radius pairs. If we adjoin degenerated immersed empty disks with radius 0,
we obtain a compact manifold with boundary, parameterized by

D̄ = {
(c, r) ∈ S × R≥0 | d(c,V ) ≥ r

}
.

For a point x ∈ S the power function with respect to x is the continuous function

powx : D̄ → R, powx(c, r) = (
d(c, x)

)2 − r2.

If ϕ : D̄ → S is an immersed empty disk with center c and radius r , then powx(c, r)

is smaller than, equal to, or greater than zero depending on whether x ∈ ϕ(D), x ∈
∂ϕ(D), or x ∈ S \ ϕ(D̄).

Let x ∈ S. We have to show that x is contained in some closed cell. If x ∈ V this is
clear, because the points in V are 0-cells. So assume x ∈ S \V . Since powx is continu-
ous on the compact set D̄, there is a (cmin, rmin) ∈ D̄ where powx attains its minimum.
Since x 	∈ V , there is an empty disk containing x and hence powx(cmin, rmin) < 0.
Let ϕ : D̄ → S be an immersed empty disk with center cmin and radius rmin; i.e. D

is a disk in R
2 with center m ∈ R

2 and radius rmin and ϕ(m) = cmin. There is a
p ∈ D with ϕ(p) = x and ‖p − m‖ = d(x, cmin). We show by contradiction that
p ∈ convϕ−1(V ).

Suppose the opposite is true: p 	∈ convϕ−1(V ). Then there exists a closed half-
space H ⊂ R

2 with ϕ−1(V ) ⊂ H but p 	∈ H . In that case there exists another
immersed empty disk ϕ̃ : D̃ → M with D \ D̃ ⊂ intH , D̃ \ D ⊂ R

2 \ H , and
ϕ|

D∩D̃
= ϕ̃|

D∩D̃
(see Fig. 4). Let m̃ and r̃ be center and radius of D̃. Then

‖p − m̃‖2 − r̃2 < ‖p − m‖2 − r2.

(To see this, note that q �→ (‖q − m̃‖2 − r̃2) − (‖q − m‖2 − r2) is an affine linear
function R

2 → R, which vanishes on ∂H and is positive on intH , and negative on
R

2 \ H .) This implies powx(c̃, r̃) < powx(cmin, rmin), where c̃ = ϕ̃(m̃). This contra-
dicts the assumption that powx attains its minimum on (cmin, rmin). �

Delaunay Tessellations of PF Surfaces with Boundary Now let (S, d) be a compact
PF manifold with piecewise geodesic boundary. Let V ⊂ S be a finite set of points
which contains all cone points and all corners of the boundary. The boundary is then
a union of geodesic segments connecting points in V but containing no points of V in
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their interior. Each connected component of the boundary is a closed geodesic poly-
gon with vertices in V . To each such boundary polygon glue a PF surface obtained
by cyclicly gluing together the appropriate number of isosceles triangles with appro-
priate base lengths and legs of length R > 0. Each of these caps contains a special
point where the triangle apexes are glued together. It is in general a cone point. The
result of closing all wholes with such caps is a closed PF surface (Ŝ, d). Let V̂ be the
union of V and the set of special points of the caps. If R is chosen large enough, then
the isosceles triangles in the caps will be faces of the Delaunay tessellation of (Ŝ, d)

with respect to V̂ . (This is so because if R is large enough, the immersed circumdisks
intersect S in lunes which are so small that they are empty.) The Delaunay tessella-
tion of the bounded surface (S, d) with respect to V is defined to be the cell complex
obtained by removing these triangles.

Delaunay Triangulations A Delaunay triangulation is a triangulation obtained from
a Delaunay tessellation by triangulating all non-triangular faces. A Delaunay trian-
gulation is characterized by the empty circumcircle property: A tessellation of (S, d)

on the vertex set V is a Delaunay triangulation iff for each face f there exists an im-
mersed empty disk ϕ : D̄ → S such that there are three points p1,p2,p3 ∈ ϕ−1(V )

with f = ϕ(conv{p1,p2,p3}). (But there may be more than three points in ϕ−1(V ).)
In Proposition 10 we give a more local characterization of Delaunay triangula-

tions.

Definition 8 Let T be a geodesic triangulation of (S, d) with vertex set V , and let e

be an interior edge of T . Since all faces of T are isometric to Euclidean triangles we
can isometrically unfold to the plane the two triangles of T that are adjacent to e. We
say that e is locally Delaunay if no vertex of the two unfolded triangles is contained
inside a circumcircle of these triangles.

For our investigation of discrete Laplace operators we will need the following
characterization of Delaunay edges.

Lemma 9 An interior edge e of a triangulation T of a piecewise flat surface (S, d)

is locally Delaunay if and only if the sum of the angles opposite e in the adjacent
triangles does not exceed π .

This follows immediately from the fact that opposite angles in a circular quadri-
lateral sum to π .

Clearly all interior edges of a Delaunay triangulation are locally Delaunay. This
property actually characterizes Delaunay triangulations:

Proposition 10 A triangulation T of a piecewise flat surface (S, d) is a Delaunay
triangulation if and only if all interior edges of T are locally Delaunay.

The following proof is an adaptation of Delaunay’s original argument [5] for De-
launay triangulations in R

n. (See also Edelsbrunner [10, p. 8] for a more easily avail-
able modern exposition.) Alternatively, one could also adapt the argument of Auren-
hammer and Klein [2] for Delaunay triangulations in the plane.
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Fig. 5 Left: The layed out triangles. Right: The power line of ci and ci+1 is gi,i+1. Since the edge ei,i+1
is assumed to be Delaunay, pci (x) ≥ pci+1 (x) in Hi,i+1

Proof If S is a manifold with boundary, construct a closed PF surface by gluing
piecewise flat disks to the boundary components in the manner described above. If R

is chosen large enough, all edges will be locally Delaunay. It remains to prove the
Proposition for closed PF surfaces.

Suppose that all interior edges of the triangulation T of the closed PF surface
(S, d) are locally Delaunay. We want to show that T is a Delaunay triangulation.
To this end we will show that the empty circumcircle property holds. Let t0 be a tri-
angle of T . Starting with t0 we develop a part of T in the Euclidean plane (see
Fig. 5, left). Begin with a triangle τ0 in the Euclidean plane that is congruent to
t0. Let c0 be the circumcircle of τ0. Next, lay out congruent copies of the triangles
neighboring t0. This introduces new vertices in the plane, which are on or outside c0
because the edges of t0 are Delaunay by assumption. Keep laying out neighboring
triangles in the plane at free edges but only if the free edges intersect c0. (Different
layed out triangles may correspond to the same triangle in (S, d).) Each new triangle
introduces a new vertex and we will show that they do not lie inside c0. Hence, when
the layout process stops (when all free edges do not intersect c0), the triangles simply
cover the inside of c0. It follows that t0 has an empty circumcircle in (S, d).

Let τ0, τ1, . . . , τn, be a sequence of layed out triangles such that τi and τi+1 share
an edge ei,i+1. Let xi+1 be the vertex opposite ei,i+1 in τi+1. Assuming that xi is
not inside c0 for all i < n we will show that the same holds for xn. Let gi,i+1 be the
straight line containing ei,i+1 and let Hi,i+1 be the half space bounded by gi,i+1 and
containing τi+1. Then

(H0,1 ∩ D0) ⊃ (H1,2 ∩ D0) ⊃ · · · ⊃ (Hn−1,n ∩ D0),

where D0 is the open disk bounded by c0. Hence it remains to consider the case
where xn ∈ Hi,i+1 for all i = 0, . . . , n − 1, because otherwise xn 	∈ D0.

Now consider the power of a point x ∈ R
2 with respect to a circle c ⊂ R

2 with
center xc and radius r as a function of x:

pc(x) = ‖x − xc‖2 − r2.

It is positive, zero, or negative if x lies outside, on, or inside c, respectively. The power
line of two different circles c and c′ is the locus of points x with pc(x) = pc′(x). It is
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a straight line because pc(x)−pc′(x) is linear in x. The power line of two intersecting
circles is the line through the intersection points. Let ci be the circumcircle of τi .
Either ci = ci+1 or the power line of ci and ci+1 is gi,i+1 and

Hi,i+1 = {x : pci
(x) ≥ pci+1(x)}. (2)

(See Fig. 5, right.) Indeed, pci+1(xi+1) = 0 and since the edge ei,i+1 is locally Delau-
nay by assumption, pci

(xi+1) ≥ 0. Hence

pc0(xn) ≥ pc1(xn) ≥ · · · ≥ pcn(xn) = 0,

and therefore xn lies on or outside c0. This concludes the proof. �

The edge flipping algorithm may be used to construct a Delaunay triangulation of
a piecewise flat surface (S, d) with marked points V ⊂ S:

1. Start with any triangulation T of (S, d) with vertex set V .
2. If all interior edges of T are locally Delaunay, stop.
3. Otherwise there is an interior edge e of T which is not locally Delaunay. Perform

an intrinsic edge flip: Replace e by the other diagonal of the quadrilateral formed
by the two triangles adjacent to e. Go to Step 2.

The following two propositions show that this is indeed an algorithm.

Proposition 11 If an edge is not locally Delaunay, then it can be flipped.

Proof In R
2, an edge is flippable iff the two adjacent triangles form a convex quadri-

lateral. In a PF surface, there is an additional topological obstruction to flipability:
Since the triangulation may not be regular, an edge may be adjacent to the same tri-
angle on both sides. So suppose the edge e is not locally Delaunay, i.e. the sum of
opposite angles exceeds π . Then there are two different triangles adjacent to e, be-
cause the sum of all angles in one triangle is π . These two triangles form a Euclidean
quadrilateral (possibly with some of the boundary edges identified with each other),
which is convex by the usual argument. Hence e can be flipped. �

Proposition 12 (Indermitte et al. [11]) The edge flipping algorithm terminates after
a finite number of steps.

Together with Proposition 10 this implies that the edge flipping algorithm pro-
duces a Delaunay triangulation (in the global empty-circumcircle sense). To prove
Proposition 12, one has to show that the algorithm cannot loop infinitely. In the set-
ting of planar Delaunay triangulations, it is enough to define a suitable real valued
function on the set of triangulations on the given vertices which decreases (or in-
creases) with each edge flip. Because this set of triangulations is finite, the algorithm
has to terminate. As a further consequence such a function attains its minimal (or
maximal) value on the Delaunay triangulations. Several such functions are known,
see for example Lambert [12], Musin [16], Rivin [19, Sect. 10], and the survey arti-
cle [2]. When we consider Delaunay triangulations of PF surfaces, however, the set
of triangulations on the marked points may be infinite. (The fact that the number of
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combinatorial types of triangulations is finite [19] is not sufficient to make the argu-
ment.) For example, the surface of a cube has infinitely many geodesic triangulations
on the eight vertices. To prove Proposition 12 by means of a function which decreases
with every flip, one has to show that it has the following additional property.

Definition 13 Let T be the set of triangulations of a PF surface on a given set of
marked points and let f : T → R. We say that f is proper if for any M ∈ R the
number of triangulations T ∈ T with f (T ) ≤ M is finite.

In their proof of Proposition 12, Indermitte et al. [11] use the sum of squared cir-
cumcircle radii as proper function which decreases with every flip. (For a proof that
it decreases with every flip, they refer to an unpublished PhD thesis. However, see
Musin [16], his Theorem 3 and the following lemma, for a hint on how to prove this.)
Another possible choice is Musin’s harmonic index. Below we show that it is proper
and decreases with every flip. The latter fact we deduce from Rippa’s Theorem [18],
which is also of independent interest in connection with the Laplace–Beltrami oper-
ator. Rippa’s proof holds without change also for piecewise flat surfaces.

Rippa’s Theorem 1 Let (S, d) be a piecewise flat surface and let V ⊂ S be a set of
marked points which contains the cone points and the corners of the boundary. Let
f : V → R be a function on the marked points. For each triangulation T of (S, d)

with vertex set V let fT : S → R be the PL interpolation of f that is linear on the
faces of the triangulation T .

Suppose T1 is a triangulation with an interior edge e and T2 is obtained from T1
by flipping e. If the edge e is a Delaunay edge after the flip, i.e. in T2, then

E(fT1) ≥ E(fT2),

where E denotes the Dirichlet energy as in Sect. 1. Equality holds only if fT1 = fT2

or if e was also a Delaunay edge in T1.
As a consequence, the minimum of the Dirichlet energy among all possible trian-

gulations is attained on the Delaunay triangulations (S, d):

min
T

∫

S

|∇fT |2 =
∫

S

|∇fTD
|2,

where TD is any Delaunay triangulation.
Moreover, for generic f : V → R, this property of Delaunay triangulations is

characteristic.

Rippa’s proof is based on the following comparison formula for the Dirichlet en-
ergies of two possible triangulations of a quadrilateral

E(fT1) − E(fT2) = (f1 − f2)
2

2 sin θ

(r1 + r3)(r2 + r4)

r1r2r3r4
(r1r3 − r2r4).

Here T1 and T2 are the two triangulations of the convex quadrilateral Q =
(x1, x2, x3, x4) obtained by addition of the diagonals (x1, x3) and (x2, x4) respec-
tively, f1 and f2 are the values of fT1 and fT2 at the intersection point x0 of the
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diagonals, r1, . . . , r4 are the distances from x0 to the vertices x1, . . . , x4 of the quadri-
lateral and θ is the intersection angle of the diagonals.

For a Euclidean triangle t with sides a, b, c and area A, Musin [16] defines the
harmonic index as

hrm(t) = a2 + b2 + c2

A
.

The harmonic index of a triangulation T with face set F is the sum of the harmonic
indices of all triangles:

hrm(T ) =
∑

t∈F

hrm(t).

Proposition 14 The harmonic index is proper.

Proof In a PF surface, there may be infinitely many geodesic lines connecting two
points, but for any L ∈ R only a finite number of them have length ≤ L [11]. Hence
there are only a finite number of triangulations of a PF surface with marked points
such that all edges are not longer than L. Now the Proposition follows from the
inequality

hrm(T ) ≥ lmax(T )

Atot
,

where lmax(T ) is the largest length of an edge of T and Atot is the total area of the PF
surface. Indeed, if hrm(T ) ≤ M , then lmax(T ) ≤ MAtot, and there are only finitely
many triangulations satisfying this bound on edge lengths. �

The following theorem was stated by Musin without proof [16].

Theorem 15 With the notation and under the conditions of Rippa’s Theorem

hrm(T1) ≥ hrm(T2)

and equality holds only if e is a Delaunay edge in T1 as well. This implies that the
harmonic index is minimal for a Delaunay triangulation TD (and hence for all of
them):

min
T

hrm(T ) = hrm(TD).

Proof The harmonic index of a triangle is

hrm(t) = 4(cotα + cotβ + cotγ ),

where α, β , γ are the angles of the triangle. (Because the area is A = 1
2aha = 1

2bhb =
1
2chc, where ha,hb,hc are the heights of the triangle; and a/ha = cotβ + cotγ , etc.)

For a triangulation T of (S, d) with vertex set V and x ∈ V let δx,T : S → R be
the function that is linear on the triangles of T , equal to 1 at x, and equal to 0 at all
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other marked points in V . Then

∑

x∈V

E(δx,T ) = 1

2

∑

angles α in T

cotα = 1

8
hrm(T ).

Hence the theorem follows from Rippa’s Theorem. �

3 The Discrete Laplace–Beltrami Operator and Discrete Harmonic Functions

We are now in a position to define the discrete Laplace operator on a simplicial sur-
face in an intrinsic way.

Definition 16 Let S be a simplicial surface with vertex set V and let S be its carrier,
which is a piecewise flat surface. The discrete Laplace–Beltrami operator � of a
simplicial surface S is defined as follows. For a function f : V → R

n on the vertices,
the value of �f : V → R

n at xi ∈ V is

�f (xi) =
∑

xj ∈V :(xi ,xj )∈ED

ν(xi, xj )(f (xi) − f (xj )), (3)

where ED is the edge set of a Delaunay triangulation of S and the weights are given
by

ν(xi, xj ) =
{

1
2 (cotαij + cotαji) for interior edges,
1
2 cotαij for boundary edges.

(4)

Here αij (and αji for interior edges) are the angles opposite the edge (xi, xj ) in the
adjacent triangles of the Delaunay triangulation (see Fig. 1).

The discrete Dirichlet energy of f is

ED = 1

2

∑

(xi ,xj )∈ED

ν(xi, xj )(f (xi) − f (xj ))
2.

Due to Lemma 9 and the formula cotα + cotβ = sin(α+β)
sinα sinβ

the discrete Laplace op-

erator has non-negative weights. The edges with vanishing weights are diagonals of
non-triangular cells of the Delaunay tessellation. Erasing such edges in (3) we obtain
a discrete Laplace operator on the Delaunay tessellation of S with positive weights
ν(x, xi). Moreover, this property is characteristic for Delaunay triangulations: Con-
sider a piecewise flat surface (S, d) with a triangulation T . Denote by �T the Laplace
operator of the triangulation T : it is given by the same formula (3) with the weights
νT determined by the triangulation T by the same formulas (4) as for the Delaunay
triangulation. The following observation is elementary.

Proposition 17 The Laplace operator �T of the triangulation T has non-negative
weights νT if and only if the triangulation T is Delaunay.
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Laplace operators with positive weights on graphs possess properties analogous to
the smooth theory.

Definition 18 A discrete function f : V → R
n on a simplicial surface is harmonic if

�f (x) = 0 for all interior vertices x.

Discrete harmonic functions satisfy the maximum principle: A real valued harmonic
function attains its maximum on the boundary. This implies:

Proposition 19 For each interior vertex x, the value f (x) of a harmonic function
f : V → R

n lies in the convex hull of the values f (xi) on its neighbors.

We conclude this section with some standard facts regarding boundary value prob-
lems for the discrete Laplace operator. Let us fix a subset V∂ ⊂ V of vertices—which
may but need not be the set of boundary vertices—and a function g : V∂ → R. The
problem of finding a function that satisfies �f (x) = 0 for x ∈ V \V∂ and f (x) = g(x)

for x ∈ V∂ is called a Dirichlet boundary value problem. The problem of finding a
function that satisfies �f (x) = 0 for x ∈ V \ V∂ and �f (x) = g(x) for x ∈ V∂ is a
Neumann boundary value problem.

Theorem 20 For arbitrary V∂ and g(x) the solutions of the Dirichlet and Neumann
boundary value problems exist and are unique (up to an additive constant if V∂ = ∅
and in the Neumann case). The solution minimizes the Dirichlet energy ED .

Indeed, solutions of the Dirichlet and Neumann boundary value problems are crit-
ical points of the Dirichlet energy. Since the energy is a positive definite quadratic
form, its only critical point is the global minimum.

More complicated boundary conditions, such as so called “natural boundary con-
ditions” (see Desbrun et al. [6]), are also intensively used in geometry processing.
The corresponding existence and uniqueness results are still missing.

4 Discrete Mean Curvature and Minimal Surfaces

In this section we adapt the definitions of the mean curvature vector for simplicial
surfaces and minimal surfaces originally suggested by Pinkall and Polthier [17] to
the discrete Laplace operator that we introduced in Sect. 3.

For a smooth immersed surface f : R
2 ⊃ U → R

3 the mean curvature vector is
given by the formula H = �f , where � is the Laplace–Beltrami operator of the
surface. For a simplicial surface we define the mean curvature vector by the same
formula, following [17], but we use a different Laplace operator:

Definition 21 Let S be a simplicial surface with carrier S. The discrete mean curva-
ture vector at a vertex x is

H(x) = �f (x),

where f : S → R
3 is the restriction of the identity map on R

3 to S, and � is the
discrete Laplace–Beltrami operator of Definition 16.
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The discrete mean curvature vector H(x) of a simplicial surface corresponds to
the integral of the mean curvature vector of a smooth surface over a neighborhood
of the point x. (Note when we scale the simplicial surface, H varies as the integral
of the mean curvature over some domain.) This suggests the following alternative
definition:

Definition 22 In the setup of Definition 21, let C(x) be a Voronoi cell of the vertex
x of a simplicial surface. The discrete mean curvature vector density at x is defined
by

H(x) = �f (x)

A(C(x))
,

where � is the discrete Laplace–Beltrami operator of Definition 16 and A(C(x)) is
the area of the Voronoi cell C(x).

This definition is similar to the definition of mean curvature suggested by Meyer,
Desbrun, Schröder and Barr [14]. Again, the difference is that we contend that one
should use the discrete Laplace–Beltrami operator.

Definition 23 (Wide definition of simplicial minimal surfaces). A simplicial surface
is called minimal if its mean curvature vector vanishes identically.

Since the embedding f : S → R
3 of a simplicial minimal surface is harmonic,

Proposition 19 implies

Proposition 24 Every interior vertex of a simplicial minimal surface lies in the con-
vex hull of its neighbors.

The following stricter definition is also natural.

Definition 25 (Narrow definition of simplicial minimal surfaces). A simplicial sur-
face S is called minimal if its mean curvature vector vanishes identically and the
intrinsic Delaunay triangulation of the carrier of S coincides with the triangulation
induced by the simplicial complex S .

Such a simplicial minimal surface is a critical point of the area functional under
variations of the vertex positions [17]. We would like to note that there exists also
a non-linear theory of discrete minimal surfaces based on the theory of circle pat-
terns [3].

The mean curvature flow for simplicial surfaces is given by the equation

df

dt
(x) = H(x).

This flow may change the Delaunay triangulation of the surface. At some moment two
Delaunay circles coincide and the diagonal of the corresponding quadrilateral flips.
However, since the weights of the diagonals vanish at the flip moment, the discrete
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Laplace–Beltrami operator and mean curvature vectors are continuous functions of
time t .

For the numerical computation of discrete minimal surfaces one should use the
algorithm of [17] with an extra step to adapt the Delaunay triangulation: Start with
a simplicial surface S0 which respects the given boundary conditions. Calculate the
Delaunay triangulation of the carrier S0 and the weights ν. Find an f : S0 → R

3

which respects the boundary conditions and minimizes the Dirichlet energy (see De-
finition 16). You may start with the embedding of S0 as initial guess. You obtain
a new simplicial surface S1 which is combinatorially equivalent to S0 but geometri-
cally different. Calculate the Delaunay triangulation and weights ν of S1 and find an
f : S1 → R

3 that minimizes the Dirichlet energy. Iterate.
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